new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 20

Phase Transition for Budgeted Multi-Agent Synergy

Multi-agent systems can improve reliability, yet under a fixed inference budget they often help, saturate, or even collapse. We develop a minimal and calibratable theory that predicts these regimes from three binding constraints of modern agent stacks: finite context windows, lossy inter-agent communication, and shared failures among similar agents. Each leaf agent is summarized by a compute-performance scaling exponent β; communication is captured by a message-length fidelity curve γ(m); dependence is captured by an effective shared-error correlation ρ; and a context window W imposes hard fan-in limits that make hierarchy necessary. For binary success/failure tasks with majority aggregation, we prove a sharp phase transition for deep b-ary trees with correlated inputs and lossy communication: a single scalar α_ρ (combining γ(m), ρ, and fan-in b) determines whether weak signal is amplified to a nontrivial fixed point or washed out to chance. In the amplifying regime, we derive an organization exponent s and show that budgeted synergy, i.e., outperforming the best single agent under the same total budget, occurs exactly when s>β, yielding closed-form compute allocation rules and explicit budget thresholds. We further characterize saturation via a mixing depth and provide a conservative clipped predictor that remains accurate across growth and saturation. A continuous-performance warm-up gives closed-form risks for star, chain, and tree organizations, making correlation- and communication-induced floors explicit and exposing the core design trade-offs in a smooth setting. Finally, we validate the predicted phase boundaries in controlled synthetic simulations and show how the same mechanisms explain the dominant bottlenecks reported in recent large-scale matched-budget studies of LLM agent-system scaling.

  • 3 authors
·
Jan 24

EControl: Fast Distributed Optimization with Compression and Error Control

Modern distributed training relies heavily on communication compression to reduce the communication overhead. In this work, we study algorithms employing a popular class of contractive compressors in order to reduce communication overhead. However, the naive implementation often leads to unstable convergence or even exponential divergence due to the compression bias. Error Compensation (EC) is an extremely popular mechanism to mitigate the aforementioned issues during the training of models enhanced by contractive compression operators. Compared to the effectiveness of EC in the data homogeneous regime, the understanding of the practicality and theoretical foundations of EC in the data heterogeneous regime is limited. Existing convergence analyses typically rely on strong assumptions such as bounded gradients, bounded data heterogeneity, or large batch accesses, which are often infeasible in modern machine learning applications. We resolve the majority of current issues by proposing EControl, a novel mechanism that can regulate error compensation by controlling the strength of the feedback signal. We prove fast convergence for EControl in standard strongly convex, general convex, and nonconvex settings without any additional assumptions on the problem or data heterogeneity. We conduct extensive numerical evaluations to illustrate the efficacy of our method and support our theoretical findings.

  • 3 authors
·
Nov 6, 2023

Attention Saturation and Gradient Suppression at Inflection Layers: Diagnosing and Mitigating Bottlenecks in Transformer Adaptation

Pre-trained Transformers often exhibit over-confidence in source patterns and difficulty in forming new target-domain patterns during fine-tuning. We formalize the mechanism of output saturation leading to gradient suppression through standard cross-entropy and softmax analysis, showing that gradient suppression at inflection layers confines adaptation to high-level recombination of existing features while preventing low-level reconstruction. We introduce a set of layer-wise diagnostic metrics -- attention entropy (saturation proxy), activation gradient norm, parameter gradient norm, and Delta-CKA under a shared PCA basis -- to identify inflection layers characterized by both low attention entropy and steep gradient decay. Building on these findings, we propose a diagnose-first, inject-light fine-tuning strategy: selectively inserting LoRA adapters at inflection layers to restore suppressed backward signals with minimal parameter overhead. Experiments on BERT-base transfer from SST-2 to Rotten Tomatoes under under-trained and over-trained source regimes reveal that over-trained initialization benefits from inflection-layer LoRA injection, while under-trained initialization suffers performance degradation. When base features are strong, unblocking inflection layers facilitates high-level compositional adaptation; when base features are weak, full-pathway unblocking is required for low-level reconstruction, as supported by joint analysis of layer-wise activation gradients and Delta-CKA dynamics.

  • 1 authors
·
Nov 2, 2025

AnalogSeeker: An Open-source Foundation Language Model for Analog Circuit Design

In this paper, we propose AnalogSeeker, an effort toward an open-source foundation language model for analog circuit design, with the aim of integrating domain knowledge and giving design assistance. To overcome the scarcity of data in this field, we employ a corpus collection strategy based on the domain knowledge framework of analog circuits. High-quality, accessible textbooks across relevant subfields are systematically curated and cleaned into a textual domain corpus. To address the complexity of knowledge of analog circuits, we introduce a granular domain knowledge distillation method. Raw, unlabeled domain corpus is decomposed into typical, granular learning nodes, where a multi-agent framework distills implicit knowledge embedded in unstructured text into question-answer data pairs with detailed reasoning processes, yielding a fine-grained, learnable dataset for fine-tuning. To address the unexplored challenges in training analog circuit foundation models, we explore and share our training methods through both theoretical analysis and experimental validation. We finally establish a fine-tuning-centric training paradigm, customizing and implementing a neighborhood self-constrained supervised fine-tuning algorithm. This approach enhances training outcomes by constraining the perturbation magnitude between the model's output distributions before and after training. In practice, we train the Qwen2.5-32B-Instruct model to obtain AnalogSeeker, which achieves 85.04% accuracy on AMSBench-TQA, the analog circuit knowledge evaluation benchmark, with a 15.67% point improvement over the original model and is competitive with mainstream commercial models. Furthermore, AnalogSeeker also shows effectiveness in the downstream operational amplifier design task. AnalogSeeker is open-sourced at https://huggingface.co/analogllm/analogseeker for research use.

  • 14 authors
·
Aug 14, 2025

CktGen: Automated Analog Circuit Design with Generative Artificial Intelligence

The automatic synthesis of analog circuits presents significant challenges. Most existing approaches formulate the problem as a single-objective optimization task, overlooking that design specifications for a given circuit type vary widely across applications. To address this, we introduce specification-conditioned analog circuit generation, a task that directly generates analog circuits based on target specifications. The motivation is to leverage existing well-designed circuits to improve automation in analog circuit design. Specifically, we propose CktGen, a simple yet effective variational autoencoder that maps discretized specifications and circuits into a joint latent space and reconstructs the circuit from that latent vector. Notably, as a single specification may correspond to multiple valid circuits, naively fusing specification information into the generative model does not capture these one-to-many relationships. To address this, we decouple the encoding of circuits and specifications and align their mapped latent space. Then, we employ contrastive training with a filter mask to maximize differences between encoded circuits and specifications. Furthermore, classifier guidance along with latent feature alignment promotes the clustering of circuits sharing the same specification, avoiding model collapse into trivial one-to-one mappings. By canonicalizing the latent space with respect to specifications, we can search for an optimal circuit that meets valid target specifications. We conduct comprehensive experiments on the open circuit benchmark and introduce metrics to evaluate cross-model consistency. Experimental results demonstrate that CktGen achieves substantial improvements over state-of-the-art methods.

  • 9 authors
·
Oct 1, 2024

Wavehax: Aliasing-Free Neural Waveform Synthesis Based on 2D Convolution and Harmonic Prior for Reliable Complex Spectrogram Estimation

Neural vocoders often struggle with aliasing in latent feature spaces, caused by time-domain nonlinear operations and resampling layers. Aliasing folds high-frequency components into the low-frequency range, making aliased and original frequency components indistinguishable and introducing two practical issues. First, aliasing complicates the waveform generation process, as the subsequent layers must address these aliasing effects, increasing the computational complexity. Second, it limits extrapolation performance, particularly in handling high fundamental frequencies, which degrades the perceptual quality of generated speech waveforms. This paper demonstrates that 1) time-domain nonlinear operations inevitably introduce aliasing but provide a strong inductive bias for harmonic generation, and 2) time-frequency-domain processing can achieve aliasing-free waveform synthesis but lacks the inductive bias for effective harmonic generation. Building on this insight, we propose Wavehax, an aliasing-free neural WAVEform generator that integrates 2D convolution and a HArmonic prior for reliable Complex Spectrogram estimation. Experimental results show that Wavehax achieves speech quality comparable to existing high-fidelity neural vocoders and exhibits exceptional robustness in scenarios requiring high fundamental frequency extrapolation, where aliasing effects become typically severe. Moreover, Wavehax requires less than 5% of the multiply-accumulate operations and model parameters compared to HiFi-GAN V1, while achieving over four times faster CPU inference speed.

  • 4 authors
·
Nov 11, 2024

DynaQuant: Dynamic Mixed-Precision Quantization for Learned Image Compression

Prevailing quantization techniques in Learned Image Compression (LIC) typically employ a static, uniform bit-width across all layers, failing to adapt to the highly diverse data distributions and sensitivity characteristics inherent in LIC models. This leads to a suboptimal trade-off between performance and efficiency. In this paper, we introduce DynaQuant, a novel framework for dynamic mixed-precision quantization that operates on two complementary levels. First, we propose content-aware quantization, where learnable scaling and offset parameters dynamically adapt to the statistical variations of latent features. This fine-grained adaptation is trained end-to-end using a novel Distance-aware Gradient Modulator (DGM), which provides a more informative learning signal than the standard Straight-Through Estimator. Second, we introduce a data-driven, dynamic bit-width selector that learns to assign an optimal bit precision to each layer, dynamically reconfiguring the network's precision profile based on the input data. Our fully dynamic approach offers substantial flexibility in balancing rate-distortion (R-D) performance and computational cost. Experiments demonstrate that DynaQuant achieves rd performance comparable to full-precision models while significantly reducing computational and storage requirements, thereby enabling the practical deployment of advanced LIC on diverse hardware platforms.

  • 7 authors
·
Nov 11, 2025

Harnessing Meta-Learning for Controllable Full-Frame Video Stabilization

Video stabilization remains a fundamental problem in computer vision, particularly pixel-level synthesis solutions for video stabilization, which synthesize full-frame outputs, add to the complexity of this task. These methods aim to enhance stability while synthesizing full-frame videos, but the inherent diversity in motion profiles and visual content present in each video sequence makes robust generalization with fixed parameters difficult. To address this, we present a novel method that improves pixel-level synthesis video stabilization methods by rapidly adapting models to each input video at test time. The proposed approach takes advantage of low-level visual cues available during inference to improve both the stability and visual quality of the output. Notably, the proposed rapid adaptation achieves significant performance gains even with a single adaptation pass. We further propose a jerk localization module and a targeted adaptation strategy, which focuses the adaptation on high-jerk segments for maximizing stability with fewer adaptation steps. The proposed methodology enables modern stabilizers to overcome the longstanding SOTA approaches while maintaining the full frame nature of the modern methods, while offering users with control mechanisms akin to classical approaches. Extensive experiments on diverse real-world datasets demonstrate the versatility of the proposed method. Our approach consistently improves the performance of various full-frame synthesis models in both qualitative and quantitative terms, including results on downstream applications.

  • 7 authors
·
Aug 26, 2025

Rectified SpaAttn: Revisiting Attention Sparsity for Efficient Video Generation

Diffusion Transformers dominate video generation, but the quadratic complexity of attention computation introduces substantial latency. Attention sparsity reduces computational costs by focusing on critical tokens while ignoring non-critical tokens. However, existing methods suffer from severe performance degradation. In this paper, we revisit attention sparsity and reveal that existing methods induce systematic biases in attention allocation: (1) excessive focus on critical tokens amplifies their attention weights; (2) complete neglect of non-critical tokens causes the loss of relevant attention weights. To address these issues, we propose Rectified SpaAttn, which rectifies attention allocation with implicit full attention reference, thereby enhancing the alignment between sparse and full attention maps. Specifically: (1) for critical tokens, we show that their bias is proportional to the sparse attention weights, with the ratio governed by the amplified weights. Accordingly, we propose Isolated-Pooling Attention Reallocation, which calculates accurate rectification factors by reallocating multimodal pooled weights. (2) for non-critical tokens, recovering attention weights from the pooled query-key yields attention gains but also introduces pooling errors. Therefore, we propose Gain-Aware Pooling Rectification, which ensures that the rectified gain consistently surpasses the induced error. Moreover, we customize and integrate the Rectified SpaAttn kernel using Triton, achieving up to 3.33 and 2.08 times speedups on HunyuanVideo and Wan 2.1, respectively, while maintaining high generation quality. We release Rectified SpaAttn as open-source at https://github.com/BienLuky/Rectified-SpaAttn .

  • 5 authors
·
Nov 24, 2025

Better Source, Better Flow: Learning Condition-Dependent Source Distribution for Flow Matching

Flow matching has recently emerged as a promising alternative to diffusion-based generative models, particularly for text-to-image generation. Despite its flexibility in allowing arbitrary source distributions, most existing approaches rely on a standard Gaussian distribution, a choice inherited from diffusion models, and rarely consider the source distribution itself as an optimization target in such settings. In this work, we show that principled design of the source distribution is not only feasible but also beneficial at the scale of modern text-to-image systems. Specifically, we propose learning a condition-dependent source distribution under flow matching objective that better exploit rich conditioning signals. We identify key failure modes that arise when directly incorporating conditioning into the source, including distributional collapse and instability, and show that appropriate variance regularization and directional alignment between source and target are critical for stable and effective learning. We further analyze how the choice of target representation space impacts flow matching with structured sources, revealing regimes in which such designs are most effective. Extensive experiments across multiple text-to-image benchmarks demonstrate consistent and robust improvements, including up to a 3x faster convergence in FID, highlighting the practical benefits of a principled source distribution design for conditional flow matching.

  • 4 authors
·
Feb 5

Wideband Relative Transfer Function (RTF) Estimation Exploiting Frequency Correlations

This article focuses on estimating relative transfer functions (RTFs) for beamforming applications. Traditional methods often assume that spectra are uncorrelated, an assumption that is often violated in practical scenarios due to factors such as time-domain windowing or the non-stationary nature of signals, as observed in speech. To overcome these limitations, we propose an RTF estimation technique that leverages spectral and spatial correlations through subspace analysis. Additionally, we derive Cram\'er--Rao bounds (CRBs) for the RTF estimation task, providing theoretical insights into the achievable estimation accuracy. These bounds reveal that channel estimation can be performed more accurately if the noise or the target signal exhibits spectral correlations. Experiments with both real and synthetic data show that our technique outperforms the narrowband maximum-likelihood estimator, known as covariance whitening (CW), when the target exhibits spectral correlations. Although the proposed algorithm generally achieves accuracy close to the theoretical bound, there is potential for further improvement, especially in scenarios with highly spectrally correlated noise. While channel estimation has various applications, we demonstrate the method using a minimum variance distortionless (MVDR) beamformer for multichannel speech enhancement. A free Python implementation is also provided.

  • 3 authors
·
Jul 19, 2024

The Condition Number as a Scale-Invariant Proxy for Information Encoding in Neural Units

This paper explores the relationship between the condition number of a neural network's weight tensor and the extent of information encoded by the associated processing unit, viewed through the lens of information theory. It argues that a high condition number, though not sufficient for effective knowledge encoding, may indicate that the unit has learned to selectively amplify and compress information. This intuition is formalized for linear units with Gaussian inputs, linking the condition number and the transformation's log-volume scaling factor to the characteristics of the output entropy and the geometric properties of the learned transformation. The analysis demonstrates that for a fixed weight norm, a concentrated distribution of singular values (high condition number) corresponds to reduced overall information transfer, indicating a specialized and efficient encoding strategy. Furthermore, the linear stage entropy bound provides an upper limit on post-activation information for contractive, element-wise nonlinearities, supporting the condition number as a scale-invariant proxy for encoding capacity in practical neural networks. An empirical case study applies these principles to guide selective fine-tuning of Large Language Models for both a new task and a new input modality. The experiments show that the proposed method, named KappaTune, effectively mitigates catastrophic forgetting. Unlike many existing catastrophic forgetting mitigation methods that rely on access to pre-training statistics, which are often unavailable, this selective fine-tuning approach offers a way to bypass this common requirement.

  • 1 authors
·
Jun 19, 2025 1

ρ-EOS: Training-free Bidirectional Variable-Length Control for Masked Diffusion LLMs

Beyond parallel generation and global context modeling, current masked diffusion large language models (dLLMs) suffer from a fundamental limitation: they require a predefined, fixed generation length, which lacks flexibility and forces an inevitable trade-off between output quality and computational efficiency. To address this, we study the denoising dynamics and find that the implicit density (ρ) of end-of-sequence (EOS) tokens serves as a reliable signal of generation sufficiency. In particular, the evolving implicit EOS density during denoising reveals whether the current masked space is excessive or insufficient, thereby guiding the adjustment direction for generation length. Building on this insight, we propose $ρ-texttt{EOS}, a training-free, single-stage strategy that enables bidirectional variable-length generation for masked dLLMs. Unlike prior two-stage approaches--which require separate length adjustment and iterative mask insertion phases while supporting only unidirectional expansion--ρ-texttt{EOS} achieves bidirectional length adjustment within a unified denoising process by continuously estimating the implicit EOS density: excessively high density triggers MASK token contraction, while insufficient density induces expansion. Extensive experiments on mathematics and code benchmarks demonstrate that ρ-texttt{EOS}$ achieves comparable performance while substantially improving inference efficiency and token utilization.

  • 3 authors
·
Jan 29

Rolling Forcing: Autoregressive Long Video Diffusion in Real Time

Streaming video generation, as one fundamental component in interactive world models and neural game engines, aims to generate high-quality, low-latency, and temporally coherent long video streams. However, most existing work suffers from severe error accumulation that often significantly degrades the generated stream videos over long horizons. We design Rolling Forcing, a novel video generation technique that enables streaming long videos with minimal error accumulation. Rolling Forcing comes with three novel designs. First, instead of iteratively sampling individual frames, which accelerates error propagation, we design a joint denoising scheme that simultaneously denoises multiple frames with progressively increasing noise levels. This design relaxes the strict causality across adjacent frames, effectively suppressing error growth. Second, we introduce the attention sink mechanism into the long-horizon stream video generation task, which allows the model to keep key value states of initial frames as a global context anchor and thereby enhances long-term global consistency. Third, we design an efficient training algorithm that enables few-step distillation over largely extended denoising windows. This algorithm operates on non-overlapping windows and mitigates exposure bias conditioned on self-generated histories. Extensive experiments show that Rolling Forcing enables real-time streaming generation of multi-minute videos on a single GPU, with substantially reduced error accumulation.

TencentARC ARC Lab, Tencent PCG
·
Sep 29, 2025 3

Adaptive coding efficiency in recurrent cortical circuits via gain control

Sensory systems across all modalities and species exhibit adaptation to continuously changing input statistics. Individual neurons have been shown to modulate their response gains so as to maximize information transmission in different stimulus contexts. Experimental measurements have revealed additional, nuanced sensory adaptation effects including changes in response maxima and minima, tuning curve repulsion from the adapter stimulus, and stimulus-driven response decorrelation. Existing explanations of these phenomena rely on changes in inter-neuronal synaptic efficacy, which, while more flexible, are unlikely to operate as rapidly or reversibly as single neuron gain modulations. Using published V1 population adaptation data, we show that propagation of single neuron gain changes in a recurrent network is sufficient to capture the entire set of observed adaptation effects. We propose a novel adaptive efficient coding objective with which single neuron gains are modulated, maximizing the fidelity of the stimulus representation while minimizing overall activity in the network. From this objective, we analytically derive a set of gains that optimize the trade-off between preserving information about the stimulus and conserving metabolic resources. Our model generalizes well-established concepts of single neuron adaptive gain control to recurrent populations, and parsimoniously explains experimental adaptation data.

  • 4 authors
·
May 31, 2023

Phased DMD: Few-step Distribution Matching Distillation via Score Matching within Subintervals

Distribution Matching Distillation (DMD) distills score-based generative models into efficient one-step generators, without requiring a one-to-one correspondence with the sampling trajectories of their teachers. However, limited model capacity causes one-step distilled models underperform on complex generative tasks, e.g., synthesizing intricate object motions in text-to-video generation. Directly extending DMD to multi-step distillation increases memory usage and computational depth, leading to instability and reduced efficiency. While prior works propose stochastic gradient truncation as a potential solution, we observe that it substantially reduces the generation diversity of multi-step distilled models, bringing it down to the level of their one-step counterparts. To address these limitations, we propose Phased DMD, a multi-step distillation framework that bridges the idea of phase-wise distillation with Mixture-of-Experts (MoE), reducing learning difficulty while enhancing model capacity. Phased DMD is built upon two key ideas: progressive distribution matching and score matching within subintervals. First, our model divides the SNR range into subintervals, progressively refining the model to higher SNR levels, to better capture complex distributions. Next, to ensure the training objective within each subinterval is accurate, we have conducted rigorous mathematical derivations. We validate Phased DMD by distilling state-of-the-art image and video generation models, including Qwen-Image (20B parameters) and Wan2.2 (28B parameters). Experimental results demonstrate that Phased DMD preserves output diversity better than DMD while retaining key generative capabilities. We will release our code and models.

sensenova SenseNova
·
Oct 31, 2025 1

A Simple Approach to Unifying Diffusion-based Conditional Generation

Recent progress in image generation has sparked research into controlling these models through condition signals, with various methods addressing specific challenges in conditional generation. Instead of proposing another specialized technique, we introduce a simple, unified framework to handle diverse conditional generation tasks involving a specific image-condition correlation. By learning a joint distribution over a correlated image pair (e.g. image and depth) with a diffusion model, our approach enables versatile capabilities via different inference-time sampling schemes, including controllable image generation (e.g. depth to image), estimation (e.g. image to depth), signal guidance, joint generation (image & depth), and coarse control. Previous attempts at unification often introduce significant complexity through multi-stage training, architectural modification, or increased parameter counts. In contrast, our simple formulation requires a single, computationally efficient training stage, maintains the standard model input, and adds minimal learned parameters (15% of the base model). Moreover, our model supports additional capabilities like non-spatially aligned and coarse conditioning. Extensive results show that our single model can produce comparable results with specialized methods and better results than prior unified methods. We also demonstrate that multiple models can be effectively combined for multi-signal conditional generation.

  • 7 authors
·
Oct 15, 2024

When RL Meets Adaptive Speculative Training: A Unified Training-Serving System

Speculative decoding can significantly accelerate LLM serving, yet most deployments today disentangle speculator training from serving, treating speculator training as a standalone offline modeling problem. We show that this decoupled formulation introduces substantial deployment and adaptation lag: (1) high time-to-serve, since a speculator must be trained offline for a considerable period before deployment; (2) delayed utility feedback, since the true end-to-end decoding speedup is only known after training and cannot be inferred reliably from acceptance rate alone due to model-architecture and system-level overheads; and (3) domain-drift degradation, as the target model is repurposed to new domains and the speculator becomes stale and less effective. To address these issues, we present Aurora, a unified training-serving system that closes the loop by continuously learning a speculator directly from live inference traces. Aurora reframes online speculator learning as an asynchronous reinforcement-learning problem: accepted tokens provide positive feedback, while rejected speculator proposals provide implicit negative feedback that we exploit to improve sample efficiency. Our design integrates an SGLang-based inference server with an asynchronous training server, enabling hot-swapped speculator updates without service interruption. Crucially, Aurora supports day-0 deployment: a speculator can be served immediately and rapidly adapted to live traffic, improving system performance while providing immediate utility feedback. Across experiments, Aurora achieves a 1.5x day-0 speedup on recently released frontier models (e.g., MiniMax M2.1 229B and Qwen3-Coder-Next 80B). Aurora also adapts effectively to distribution shifts in user traffic, delivering an additional 1.25x speedup over a well-trained but static speculator on widely used models (e.g., Qwen3 and Llama3).

  • 18 authors
·
Feb 6

HoloBeam: Learning Optimal Beamforming in Far-Field Holographic Metasurface Transceivers

Holographic Metasurface Transceivers (HMTs) are emerging as cost-effective substitutes to large antenna arrays for beamforming in Millimeter and TeraHertz wave communication. However, to achieve desired channel gains through beamforming in HMT, phase-shifts of a large number of elements need to be appropriately set, which is challenging. Also, these optimal phase-shifts depend on the location of the receivers, which could be unknown. In this work, we develop a learning algorithm using a {\it fixed-budget multi-armed bandit framework} to beamform and maximize received signal strength at the receiver for far-field regions. Our algorithm, named \Algo exploits the parametric form of channel gains of the beams, which can be expressed in terms of two {\it phase-shifting parameters}. Even after parameterization, the problem is still challenging as phase-shifting parameters take continuous values. To overcome this, {\it\HB} works with the discrete values of phase-shifting parameters and exploits their unimodal relations with channel gains to learn the optimal values faster. We upper bound the probability of {\it\HB} incorrectly identifying the (discrete) optimal phase-shift parameters in terms of the number of pilots used in learning. We show that this probability decays exponentially with the number of pilot signals. We demonstrate that {\it\HB} outperforms state-of-the-art algorithms through extensive simulations.

  • 3 authors
·
Dec 29, 2023

Rethinking Multi-Condition DiTs: Eliminating Redundant Attention via Position-Alignment and Keyword-Scoping

While modern text-to-image models excel at prompt-based generation, they often lack the fine-grained control necessary for specific user requirements like spatial layouts or subject appearances. Multi-condition control addresses this, yet its integration into Diffusion Transformers (DiTs) is bottlenecked by the conventional ``concatenate-and-attend'' strategy, which suffers from quadratic computational and memory overhead as the number of conditions scales. Our analysis reveals that much of this cross-modal interaction is spatially or semantically redundant. To this end, we propose Position-aligned and Keyword-scoped Attention (PKA), a highly efficient framework designed to eliminate these redundancies. Specifically, Position-Aligned Attention (PAA) linearizes spatial control by enforcing localized patch alignment, while Keyword-Scoped Attention (KSA) prunes irrelevant subject-driven interactions via semantic-aware masking. To facilitate efficient learning, we further introduce a Conditional Sensitivity-Aware Sampling (CSAS) strategy that reweights the training objective towards critical denoising phases, drastically accelerating convergence and enhancing conditional fidelity. Empirically, PKA delivers a 10.0times inference speedup and a 5.1times VRAM saving, providing a scalable and resource-friendly solution for high-fidelity multi-conditioned generation.

  • 5 authors
·
Feb 6

FreCaS: Efficient Higher-Resolution Image Generation via Frequency-aware Cascaded Sampling

While image generation with diffusion models has achieved a great success, generating images of higher resolution than the training size remains a challenging task due to the high computational cost. Current methods typically perform the entire sampling process at full resolution and process all frequency components simultaneously, contradicting with the inherent coarse-to-fine nature of latent diffusion models and wasting computations on processing premature high-frequency details at early diffusion stages. To address this issue, we introduce an efficient Frequency-aware Cascaded Sampling framework, FreCaS in short, for higher-resolution image generation. FreCaS decomposes the sampling process into cascaded stages with gradually increased resolutions, progressively expanding frequency bands and refining the corresponding details. We propose an innovative frequency-aware classifier-free guidance (FA-CFG) strategy to assign different guidance strengths for different frequency components, directing the diffusion model to add new details in the expanded frequency domain of each stage. Additionally, we fuse the cross-attention maps of previous and current stages to avoid synthesizing unfaithful layouts. Experiments demonstrate that FreCaS significantly outperforms state-of-the-art methods in image quality and generation speed. In particular, FreCaS is about 2.86times and 6.07times faster than ScaleCrafter and DemoFusion in generating a 2048times2048 image using a pre-trained SDXL model and achieves an FID_b improvement of 11.6 and 3.7, respectively. FreCaS can be easily extended to more complex models such as SD3. The source code of FreCaS can be found at text{https://github.com/xtudbxk/FreCaS}{https://github.com/xtudbxk/FreCaS}.

  • 3 authors
·
Oct 23, 2024

Eliminating Oversaturation and Artifacts of High Guidance Scales in Diffusion Models

Classifier-free guidance (CFG) is crucial for improving both generation quality and alignment between the input condition and final output in diffusion models. While a high guidance scale is generally required to enhance these aspects, it also causes oversaturation and unrealistic artifacts. In this paper, we revisit the CFG update rule and introduce modifications to address this issue. We first decompose the update term in CFG into parallel and orthogonal components with respect to the conditional model prediction and observe that the parallel component primarily causes oversaturation, while the orthogonal component enhances image quality. Accordingly, we propose down-weighting the parallel component to achieve high-quality generations without oversaturation. Additionally, we draw a connection between CFG and gradient ascent and introduce a new rescaling and momentum method for the CFG update rule based on this insight. Our approach, termed adaptive projected guidance (APG), retains the quality-boosting advantages of CFG while enabling the use of higher guidance scales without oversaturation. APG is easy to implement and introduces practically no additional computational overhead to the sampling process. Through extensive experiments, we demonstrate that APG is compatible with various conditional diffusion models and samplers, leading to improved FID, recall, and saturation scores while maintaining precision comparable to CFG, making our method a superior plug-and-play alternative to standard classifier-free guidance.

  • 3 authors
·
Oct 3, 2024 8

Autonomous In-Situ Soundscape Augmentation via Joint Selection of Masker and Gain

The selection of maskers and playback gain levels in a soundscape augmentation system is crucial to its effectiveness in improving the overall acoustic comfort of a given environment. Traditionally, the selection of appropriate maskers and gain levels has been informed by expert opinion, which may not representative of the target population, or by listening tests, which can be time-consuming and labour-intensive. Furthermore, the resulting static choices of masker and gain are often inflexible to the dynamic nature of real-world soundscapes. In this work, we utilized a deep learning model to perform joint selection of the optimal masker and its gain level for a given soundscape. The proposed model was designed with highly modular building blocks, allowing for an optimized inference process that can quickly search through a large number of masker and gain combinations. In addition, we introduced the use of feature-domain soundscape augmentation conditioned on the digital gain level, eliminating the computationally expensive waveform-domain mixing process during inference time, as well as the tedious pre-calibration process required for new maskers. The proposed system was validated on a large-scale dataset of subjective responses to augmented soundscapes with more than 440 participants, ensuring the ability of the model to predict combined effect of the masker and its gain level on the perceptual pleasantness level.

  • 6 authors
·
Apr 29, 2022

RAVE: A variational autoencoder for fast and high-quality neural audio synthesis

Deep generative models applied to audio have improved by a large margin the state-of-the-art in many speech and music related tasks. However, as raw waveform modelling remains an inherently difficult task, audio generative models are either computationally intensive, rely on low sampling rates, are complicated to control or restrict the nature of possible signals. Among those models, Variational AutoEncoders (VAE) give control over the generation by exposing latent variables, although they usually suffer from low synthesis quality. In this paper, we introduce a Realtime Audio Variational autoEncoder (RAVE) allowing both fast and high-quality audio waveform synthesis. We introduce a novel two-stage training procedure, namely representation learning and adversarial fine-tuning. We show that using a post-training analysis of the latent space allows a direct control between the reconstruction fidelity and the representation compactness. By leveraging a multi-band decomposition of the raw waveform, we show that our model is the first able to generate 48kHz audio signals, while simultaneously running 20 times faster than real-time on a standard laptop CPU. We evaluate synthesis quality using both quantitative and qualitative subjective experiments and show the superiority of our approach compared to existing models. Finally, we present applications of our model for timbre transfer and signal compression. All of our source code and audio examples are publicly available.

  • 2 authors
·
Nov 9, 2021

RAAG: Ratio Aware Adaptive Guidance

Flow-based generative models have achieved remarkable progress, with classifier-free guidance (CFG) becoming the standard for high-fidelity generation. However, the conventional practice of applying a strong, fixed guidance scale throughout inference is poorly suited for the rapid, few-step sampling required by modern applications. In this work, we uncover the root cause of this conflict: a fundamental sampling instability where the earliest steps are acutely sensitive to guidance. We trace this to a significant spike in the ratio of conditional to unconditional predictions--a spike that we prove to be an inherent property of the training data distribution itself, making it a almost inevitable challenge. Applying a high, static guidance value during this volatile initial phase leads to an exponential amplification of error, degrading image quality. To resolve this, we propose a simple, theoretically grounded, adaptive guidance schedule that automatically dampens the guidance scale at early steps based on the evolving ratio. Our method is lightweight, incurs no inference overhead, and is compatible with standard frameworks. Experiments across state-of-the-art image (SD3.5, Qwen-Image) and video (WAN2.1) models show our approach enables up to 3x faster sampling while maintaining or improving quality, robustness, and semantic alignment. Our findings highlight that adapting guidance to the sampling process, rather than fixing it, is critical for unlocking the full potential of fast, flow-based models.

  • 10 authors
·
Aug 5, 2025

Tunable Convolutions with Parametric Multi-Loss Optimization

Behavior of neural networks is irremediably determined by the specific loss and data used during training. However it is often desirable to tune the model at inference time based on external factors such as preferences of the user or dynamic characteristics of the data. This is especially important to balance the perception-distortion trade-off of ill-posed image-to-image translation tasks. In this work, we propose to optimize a parametric tunable convolutional layer, which includes a number of different kernels, using a parametric multi-loss, which includes an equal number of objectives. Our key insight is to use a shared set of parameters to dynamically interpolate both the objectives and the kernels. During training, these parameters are sampled at random to explicitly optimize all possible combinations of objectives and consequently disentangle their effect into the corresponding kernels. During inference, these parameters become interactive inputs of the model hence enabling reliable and consistent control over the model behavior. Extensive experimental results demonstrate that our tunable convolutions effectively work as a drop-in replacement for traditional convolutions in existing neural networks at virtually no extra computational cost, outperforming state-of-the-art control strategies in a wide range of applications; including image denoising, deblurring, super-resolution, and style transfer.

  • 5 authors
·
Apr 3, 2023

Towards High-Quality and Efficient Speech Bandwidth Extension with Parallel Amplitude and Phase Prediction

Speech bandwidth extension (BWE) refers to widening the frequency bandwidth range of speech signals, enhancing the speech quality towards brighter and fuller. This paper proposes a generative adversarial network (GAN) based BWE model with parallel prediction of Amplitude and Phase spectra, named AP-BWE, which achieves both high-quality and efficient wideband speech waveform generation. The proposed AP-BWE generator is entirely based on convolutional neural networks (CNNs). It features a dual-stream architecture with mutual interaction, where the amplitude stream and the phase stream communicate with each other and respectively extend the high-frequency components from the input narrowband amplitude and phase spectra. To improve the naturalness of the extended speech signals, we employ a multi-period discriminator at the waveform level and design a pair of multi-resolution amplitude and phase discriminators at the spectral level, respectively. Experimental results demonstrate that our proposed AP-BWE achieves state-of-the-art performance in terms of speech quality for BWE tasks targeting sampling rates of both 16 kHz and 48 kHz. In terms of generation efficiency, due to the all-convolutional architecture and all-frame-level operations, the proposed AP-BWE can generate 48 kHz waveform samples 292.3 times faster than real-time on a single RTX 4090 GPU and 18.1 times faster than real-time on a single CPU. Notably, to our knowledge, AP-BWE is the first to achieve the direct extension of the high-frequency phase spectrum, which is beneficial for improving the effectiveness of existing BWE methods.

  • 4 authors
·
Jan 12, 2024

PV-Tuning: Beyond Straight-Through Estimation for Extreme LLM Compression

There has been significant interest in "extreme" compression of large language models (LLMs), i.e., to 1-2 bits per parameter, which allows such models to be executed efficiently on resource-constrained devices. Existing work focused on improved one-shot quantization techniques and weight representations; yet, purely post-training approaches are reaching diminishing returns in terms of the accuracy-vs-bit-width trade-off. State-of-the-art quantization methods such as QuIP# and AQLM include fine-tuning (part of) the compressed parameters over a limited amount of calibration data; however, such fine-tuning techniques over compressed weights often make exclusive use of straight-through estimators (STE), whose performance is not well-understood in this setting. In this work, we question the use of STE for extreme LLM compression, showing that it can be sub-optimal, and perform a systematic study of quantization-aware fine-tuning strategies for LLMs. We propose PV-Tuning - a representation-agnostic framework that generalizes and improves upon existing fine-tuning strategies, and provides convergence guarantees in restricted cases. On the practical side, when used for 1-2 bit vector quantization, PV-Tuning outperforms prior techniques for highly-performant models such as Llama and Mistral. Using PV-Tuning, we achieve the first Pareto-optimal quantization for Llama 2 family models at 2 bits per parameter.

  • 8 authors
·
May 23, 2024

SonicMaster: Towards Controllable All-in-One Music Restoration and Mastering

Music recordings often suffer from audio quality issues such as excessive reverberation, distortion, clipping, tonal imbalances, and a narrowed stereo image, especially when created in non-professional settings without specialized equipment or expertise. These problems are typically corrected using separate specialized tools and manual adjustments. In this paper, we introduce SonicMaster, the first unified generative model for music restoration and mastering that addresses a broad spectrum of audio artifacts with text-based control. SonicMaster is conditioned on natural language instructions to apply targeted enhancements, or can operate in an automatic mode for general restoration. To train this model, we construct the SonicMaster dataset, a large dataset of paired degraded and high-quality tracks by simulating common degradation types with nineteen degradation functions belonging to five enhancements groups: equalization, dynamics, reverb, amplitude, and stereo. Our approach leverages a flow-matching generative training paradigm to learn an audio transformation that maps degraded inputs to their cleaned, mastered versions guided by text prompts. Objective audio quality metrics demonstrate that SonicMaster significantly improves sound quality across all artifact categories. Furthermore, subjective listening tests confirm that listeners prefer SonicMaster's enhanced outputs over the original degraded audio, highlighting the effectiveness of our unified approach.

  • 3 authors
·
Aug 5, 2025 3

HRTFformer: A Spatially-Aware Transformer for Personalized HRTF Upsampling in Immersive Audio Rendering

Personalized Head-Related Transfer Functions (HRTFs) are starting to be introduced in many commercial immersive audio applications and are crucial for realistic spatial audio rendering. However, one of the main hesitations regarding their introduction is that creating personalized HRTFs is impractical at scale due to the complexities of the HRTF measurement process. To mitigate this drawback, HRTF spatial upsampling has been proposed with the aim of reducing measurements required. While prior work has seen success with different machine learning (ML) approaches, these models often struggle with long-range spatial consistency and generalization at high upsampling factors. In this paper, we propose a novel transformer-based architecture for HRTF upsampling, leveraging the attention mechanism to better capture spatial correlations across the HRTF sphere. Working in the spherical harmonic (SH) domain, our model learns to reconstruct high-resolution HRTFs from sparse input measurements with significantly improved accuracy. To enhance spatial coherence, we introduce a neighbor dissimilarity loss that promotes magnitude smoothness, yielding more realistic upsampling. We evaluate our method using both perceptual localization models and objective spectral distortion metrics. Experiments show that our model surpasses leading methods by a substantial margin in generating realistic, high-fidelity HRTFs.

  • 7 authors
·
Oct 2, 2025

SADA: Stability-guided Adaptive Diffusion Acceleration

Diffusion models have achieved remarkable success in generative tasks but suffer from high computational costs due to their iterative sampling process and quadratic attention costs. Existing training-free acceleration strategies that reduce per-step computation cost, while effectively reducing sampling time, demonstrate low faithfulness compared to the original baseline. We hypothesize that this fidelity gap arises because (a) different prompts correspond to varying denoising trajectory, and (b) such methods do not consider the underlying ODE formulation and its numerical solution. In this paper, we propose Stability-guided Adaptive Diffusion Acceleration (SADA), a novel paradigm that unifies step-wise and token-wise sparsity decisions via a single stability criterion to accelerate sampling of ODE-based generative models (Diffusion and Flow-matching). For (a), SADA adaptively allocates sparsity based on the sampling trajectory. For (b), SADA introduces principled approximation schemes that leverage the precise gradient information from the numerical ODE solver. Comprehensive evaluations on SD-2, SDXL, and Flux using both EDM and DPM++ solvers reveal consistent ge 1.8times speedups with minimal fidelity degradation (LPIPS leq 0.10 and FID leq 4.5) compared to unmodified baselines, significantly outperforming prior methods. Moreover, SADA adapts seamlessly to other pipelines and modalities: It accelerates ControlNet without any modifications and speeds up MusicLDM by 1.8times with sim 0.01 spectrogram LPIPS.

  • 10 authors
·
Jul 22, 2025

Accelerating High-Fidelity Waveform Generation via Adversarial Flow Matching Optimization

This paper introduces PeriodWave-Turbo, a high-fidelity and high-efficient waveform generation model via adversarial flow matching optimization. Recently, conditional flow matching (CFM) generative models have been successfully adopted for waveform generation tasks, leveraging a single vector field estimation objective for training. Although these models can generate high-fidelity waveform signals, they require significantly more ODE steps compared to GAN-based models, which only need a single generation step. Additionally, the generated samples often lack high-frequency information due to noisy vector field estimation, which fails to ensure high-frequency reproduction. To address this limitation, we enhance pre-trained CFM-based generative models by incorporating a fixed-step generator modification. We utilized reconstruction losses and adversarial feedback to accelerate high-fidelity waveform generation. Through adversarial flow matching optimization, it only requires 1,000 steps of fine-tuning to achieve state-of-the-art performance across various objective metrics. Moreover, we significantly reduce inference speed from 16 steps to 2 or 4 steps. Additionally, by scaling up the backbone of PeriodWave from 29M to 70M parameters for improved generalization, PeriodWave-Turbo achieves unprecedented performance, with a perceptual evaluation of speech quality (PESQ) score of 4.454 on the LibriTTS dataset. Audio samples, source code and checkpoints will be available at https://github.com/sh-lee-prml/PeriodWave.

  • 3 authors
·
Aug 15, 2024 4

SimpleGVR: A Simple Baseline for Latent-Cascaded Video Super-Resolution

Latent diffusion models have emerged as a leading paradigm for efficient video generation. However, as user expectations shift toward higher-resolution outputs, relying solely on latent computation becomes inadequate. A promising approach involves decoupling the process into two stages: semantic content generation and detail synthesis. The former employs a computationally intensive base model at lower resolutions, while the latter leverages a lightweight cascaded video super-resolution (VSR) model to achieve high-resolution output. In this work, we focus on studying key design principles for latter cascaded VSR models, which are underexplored currently. First, we propose two degradation strategies to generate training pairs that better mimic the output characteristics of the base model, ensuring alignment between the VSR model and its upstream generator. Second, we provide critical insights into VSR model behavior through systematic analysis of (1) timestep sampling strategies, (2) noise augmentation effects on low-resolution (LR) inputs. These findings directly inform our architectural and training innovations. Finally, we introduce interleaving temporal unit and sparse local attention to achieve efficient training and inference, drastically reducing computational overhead. Extensive experiments demonstrate the superiority of our framework over existing methods, with ablation studies confirming the efficacy of each design choice. Our work establishes a simple yet effective baseline for cascaded video super-resolution generation, offering practical insights to guide future advancements in efficient cascaded synthesis systems.

  • 10 authors
·
Jun 24, 2025 1

Exploring Quality and Generalizability in Parameterized Neural Audio Effects

Deep neural networks have shown promise for music audio signal processing applications, often surpassing prior approaches, particularly as end-to-end models in the waveform domain. Yet results to date have tended to be constrained by low sample rates, noise, narrow domains of signal types, and/or lack of parameterized controls (i.e. "knobs"), making their suitability for professional audio engineering workflows still lacking. This work expands on prior research published on modeling nonlinear time-dependent signal processing effects associated with music production by means of a deep neural network, one which includes the ability to emulate the parameterized settings you would see on an analog piece of equipment, with the goal of eventually producing commercially viable, high quality audio, i.e. 44.1 kHz sampling rate at 16-bit resolution. The results in this paper highlight progress in modeling these effects through architecture and optimization changes, towards increasing computational efficiency, lowering signal-to-noise ratio, and extending to a larger variety of nonlinear audio effects. Toward these ends, the strategies employed involved a three-pronged approach: model speed, model accuracy, and model generalizability. Most of the presented methods provide marginal or no increase in output accuracy over the original model, with the exception of dataset manipulation. We found that limiting the audio content of the dataset, for example using datasets of just a single instrument, provided a significant improvement in model accuracy over models trained on more general datasets.

  • 2 authors
·
Jun 9, 2020

Music ControlNet: Multiple Time-varying Controls for Music Generation

Text-to-music generation models are now capable of generating high-quality music audio in broad styles. However, text control is primarily suitable for the manipulation of global musical attributes like genre, mood, and tempo, and is less suitable for precise control over time-varying attributes such as the positions of beats in time or the changing dynamics of the music. We propose Music ControlNet, a diffusion-based music generation model that offers multiple precise, time-varying controls over generated audio. To imbue text-to-music models with time-varying control, we propose an approach analogous to pixel-wise control of the image-domain ControlNet method. Specifically, we extract controls from training audio yielding paired data, and fine-tune a diffusion-based conditional generative model over audio spectrograms given melody, dynamics, and rhythm controls. While the image-domain Uni-ControlNet method already allows generation with any subset of controls, we devise a new strategy to allow creators to input controls that are only partially specified in time. We evaluate both on controls extracted from audio and controls we expect creators to provide, demonstrating that we can generate realistic music that corresponds to control inputs in both settings. While few comparable music generation models exist, we benchmark against MusicGen, a recent model that accepts text and melody input, and show that our model generates music that is 49% more faithful to input melodies despite having 35x fewer parameters, training on 11x less data, and enabling two additional forms of time-varying control. Sound examples can be found at https://MusicControlNet.github.io/web/.

  • 4 authors
·
Nov 12, 2023 4

Artic: AI-oriented Real-time Communication for MLLM Video Assistant

AI Video Assistant emerges as a new paradigm for Real-time Communication (RTC), where one peer is a Multimodal Large Language Model (MLLM) deployed in the cloud. This makes interaction between humans and AI more intuitive, akin to chatting with a real person. However, a fundamental mismatch exists between current RTC frameworks and AI Video Assistants, stemming from the drastic shift in Quality of Experience (QoE) and more challenging networks. Measurements on our production prototype also confirm that current RTC fails, causing latency spikes and accuracy drops. To address these challenges, we propose Artic, an AI-oriented RTC framework for MLLM Video Assistants, exploring the shift from "humans watching video" to "AI understanding video." Specifically, Artic proposes: (1) Response Capability-aware Adaptive Bitrate, which utilizes MLLM accuracy saturation to proactively cap bitrate, reserving bandwidth headroom to absorb future fluctuations for latency reduction; (2) Zero-overhead Context-aware Streaming, which allocates limited bitrate to regions most important for the response, maintaining accuracy even under ultra-low bitrates; and (3) Degraded Video Understanding Benchmark, the first benchmark evaluating how RTC-induced video degradation affects MLLM accuracy. Prototype experiments using real-world uplink traces show that compared with existing methods, Artic significantly improves accuracy by 15.12% and reduces latency by 135.31 ms. We will release the benchmark and codes at https://github.com/pku-netvideo/DeViBench.

  • 5 authors
·
Feb 13

CPO: Condition Preference Optimization for Controllable Image Generation

To enhance controllability in text-to-image generation, ControlNet introduces image-based control signals, while ControlNet++ improves pixel-level cycle consistency between generated images and the input control signal. To avoid the prohibitive cost of back-propagating through the sampling process, ControlNet++ optimizes only low-noise timesteps (e.g., t < 200) using a single-step approximation, which not only ignores the contribution of high-noise timesteps but also introduces additional approximation errors. A straightforward alternative for optimizing controllability across all timesteps is Direct Preference Optimization (DPO), a fine-tuning method that increases model preference for more controllable images (I^{w}) over less controllable ones (I^{l}). However, due to uncertainty in generative models, it is difficult to ensure that win--lose image pairs differ only in controllability while keeping other factors, such as image quality, fixed. To address this, we propose performing preference learning over control conditions rather than generated images. Specifically, we construct winning and losing control signals, c^{w} and c^{l}, and train the model to prefer c^{w}. This method, which we term Condition Preference Optimization (CPO), eliminates confounding factors and yields a low-variance training objective. Our approach theoretically exhibits lower contrastive loss variance than DPO and empirically achieves superior results. Moreover, CPO requires less computation and storage for dataset curation. Extensive experiments show that CPO significantly improves controllability over the state-of-the-art ControlNet++ across multiple control types: over 10% error rate reduction in segmentation, 70--80% in human pose, and consistent 2--5% reductions in edge and depth maps.

  • 4 authors
·
Nov 6, 2025

EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models

Diffusion models have demonstrated remarkable capabilities in image synthesis and related generative tasks. Nevertheless, their practicality for low-latency real-world applications is constrained by substantial computational costs and latency issues. Quantization is a dominant way to compress and accelerate diffusion models, where post-training quantization (PTQ) and quantization-aware training (QAT) are two main approaches, each bearing its own properties. While PTQ exhibits efficiency in terms of both time and data usage, it may lead to diminished performance in low bit-width. On the other hand, QAT can alleviate performance degradation but comes with substantial demands on computational and data resources. To capitalize on the advantages while avoiding their respective drawbacks, we introduce a data-free and parameter-efficient fine-tuning framework for low-bit diffusion models, dubbed EfficientDM, to achieve QAT-level performance with PTQ-like efficiency. Specifically, we propose a quantization-aware variant of the low-rank adapter (QALoRA) that can be merged with model weights and jointly quantized to low bit-width. The fine-tuning process distills the denoising capabilities of the full-precision model into its quantized counterpart, eliminating the requirement for training data. We also introduce scale-aware optimization and employ temporal learned step-size quantization to further enhance performance. Extensive experimental results demonstrate that our method significantly outperforms previous PTQ-based diffusion models while maintaining similar time and data efficiency. Specifically, there is only a marginal 0.05 sFID increase when quantizing both weights and activations of LDM-4 to 4-bit on ImageNet 256x256. Compared to QAT-based methods, our EfficientDM also boasts a 16.2x faster quantization speed with comparable generation quality.

  • 5 authors
·
Oct 4, 2023

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration

Large language models (LLMs) have shown excellent performance on various tasks, but the astronomical model size raises the hardware barrier for serving (memory size) and slows down token generation (memory bandwidth). In this paper, we propose Activation-aware Weight Quantization (AWQ), a hardware-friendly approach for LLM low-bit weight-only quantization. Our method is based on the observation that weights are not equally important: protecting only 1% of salient weights can greatly reduce quantization error. We then propose to search for the optimal per-channel scaling that protects the salient weights by observing the activation, not weights. AWQ does not rely on any backpropagation or reconstruction, so it can well preserve LLMs' generalization ability on different domains and modalities, without overfitting to the calibration set; it also does not rely on any data layout reordering, maintaining the hardware efficiency. AWQ outperforms existing work on various language modeling, common sense QA, and domain-specific benchmarks. Thanks to better generalization, it achieves excellent quantization performance for instruction-tuned LMs and, for the first time, multi-modal LMs. We also implement efficient tensor core kernels with reorder-free online dequantization to accelerate AWQ, achieving a 1.45x speedup over GPTQ and is 1.85x faster than the cuBLAS FP16 implementation. Our method provides a turn-key solution to compress LLMs to 3/4 bits for efficient deployment.

  • 6 authors
·
Jun 1, 2023 1

Error Feedback Reloaded: From Quadratic to Arithmetic Mean of Smoothness Constants

Error Feedback (EF) is a highly popular and immensely effective mechanism for fixing convergence issues which arise in distributed training methods (such as distributed GD or SGD) when these are enhanced with greedy communication compression techniques such as TopK. While EF was proposed almost a decade ago (Seide et al., 2014), and despite concentrated effort by the community to advance the theoretical understanding of this mechanism, there is still a lot to explore. In this work we study a modern form of error feedback called EF21 (Richtarik et al., 2021) which offers the currently best-known theoretical guarantees, under the weakest assumptions, and also works well in practice. In particular, while the theoretical communication complexity of EF21 depends on the quadratic mean of certain smoothness parameters, we improve this dependence to their arithmetic mean, which is always smaller, and can be substantially smaller, especially in heterogeneous data regimes. We take the reader on a journey of our discovery process. Starting with the idea of applying EF21 to an equivalent reformulation of the underlying problem which (unfortunately) requires (often impractical) machine cloning, we continue to the discovery of a new weighted version of EF21 which can (fortunately) be executed without any cloning, and finally circle back to an improved analysis of the original EF21 method. While this development applies to the simplest form of EF21, our approach naturally extends to more elaborate variants involving stochastic gradients and partial participation. Further, our technique improves the best-known theory of EF21 in the rare features regime (Richtarik et al., 2023). Finally, we validate our theoretical findings with suitable experiments.

  • 3 authors
·
Feb 16, 2024

DDSP: Differentiable Digital Signal Processing

Most generative models of audio directly generate samples in one of two domains: time or frequency. While sufficient to express any signal, these representations are inefficient, as they do not utilize existing knowledge of how sound is generated and perceived. A third approach (vocoders/synthesizers) successfully incorporates strong domain knowledge of signal processing and perception, but has been less actively researched due to limited expressivity and difficulty integrating with modern auto-differentiation-based machine learning methods. In this paper, we introduce the Differentiable Digital Signal Processing (DDSP) library, which enables direct integration of classic signal processing elements with deep learning methods. Focusing on audio synthesis, we achieve high-fidelity generation without the need for large autoregressive models or adversarial losses, demonstrating that DDSP enables utilizing strong inductive biases without losing the expressive power of neural networks. Further, we show that combining interpretable modules permits manipulation of each separate model component, with applications such as independent control of pitch and loudness, realistic extrapolation to pitches not seen during training, blind dereverberation of room acoustics, transfer of extracted room acoustics to new environments, and transformation of timbre between disparate sources. In short, DDSP enables an interpretable and modular approach to generative modeling, without sacrificing the benefits of deep learning. The library is publicly available at https://github.com/magenta/ddsp and we welcome further contributions from the community and domain experts.

  • 4 authors
·
Jan 14, 2020

Frequency-Adaptive Dilated Convolution for Semantic Segmentation

Dilated convolution, which expands the receptive field by inserting gaps between its consecutive elements, is widely employed in computer vision. In this study, we propose three strategies to improve individual phases of dilated convolution from the view of spectrum analysis. Departing from the conventional practice of fixing a global dilation rate as a hyperparameter, we introduce Frequency-Adaptive Dilated Convolution (FADC), which dynamically adjusts dilation rates spatially based on local frequency components. Subsequently, we design two plug-in modules to directly enhance effective bandwidth and receptive field size. The Adaptive Kernel (AdaKern) module decomposes convolution weights into low-frequency and high-frequency components, dynamically adjusting the ratio between these components on a per-channel basis. By increasing the high-frequency part of convolution weights, AdaKern captures more high-frequency components, thereby improving effective bandwidth. The Frequency Selection (FreqSelect) module optimally balances high- and low-frequency components in feature representations through spatially variant reweighting. It suppresses high frequencies in the background to encourage FADC to learn a larger dilation, thereby increasing the receptive field for an expanded scope. Extensive experiments on segmentation and object detection consistently validate the efficacy of our approach. The code is publicly available at https://github.com/Linwei-Chen/FADC.

  • 3 authors
·
Mar 8, 2024