new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 13

PuzzleClone: An SMT-Powered Framework for Synthesizing Verifiable Data

High-quality mathematical and logical datasets with verifiable answers are essential for strengthening the reasoning capabilities of large language models (LLMs). While recent data augmentation techniques have facilitated the creation of large-scale benchmarks, existing LLM-generated datasets often suffer from limited reliability, diversity, and scalability. To address these challenges, we introduce PuzzleClone, a formal framework for synthesizing verifiable data at scale using Satisfiability Modulo Theories (SMT). Our approach features three key innovations: (1) encoding seed puzzles into structured logical specifications, (2) generating scalable variants through systematic variable and constraint randomization, and (3) ensuring validity via a reproduction mechanism. Applying PuzzleClone, we construct a curated benchmark comprising over 83K diverse and programmatically validated puzzles. The generated puzzles span a wide spectrum of difficulty and formats, posing significant challenges to current state-of-the-art models. We conduct post training (SFT and RL) on PuzzleClone datasets. Experimental results show that training on PuzzleClone yields substantial improvements not only on PuzzleClone testset but also on logic and mathematical benchmarks. Post training raises PuzzleClone average from 14.4 to 56.2 and delivers consistent improvements across 7 logic and mathematical benchmarks up to 12.5 absolute percentage points (AMC2023 from 52.5 to 65.0). Our code and data are available at https://github.com/puzzleclone.

  • 5 authors
·
Aug 20, 2025

LLM-Guided Quantified SMT Solving over Uninterpreted Functions

Quantified formulas with Uninterpreted Functions (UFs) over non-linear real arithmetic pose fundamental challenges for Satisfiability Modulo Theories (SMT) solving. Traditional quantifier instantiation methods struggle because they lack semantic understanding of UF constraints, forcing them to search through unbounded solution spaces with limited guidance. We present AquaForte, a framework that leverages Large Language Models to provide semantic guidance for UF instantiation by generating instantiated candidates for function definitions that satisfy the constraints, thereby significantly reducing the search space and complexity for solvers. Our approach preprocesses formulas through constraint separation, uses structured prompts to extract mathematical reasoning from LLMs, and integrates the results with traditional SMT algorithms through adaptive instantiation. AquaForte maintains soundness through systematic validation: LLM-guided instantiations yielding SAT solve the original problem, while UNSAT results generate exclusion clauses for iterative refinement. Completeness is preserved by fallback to traditional solvers augmented with learned constraints. Experimental evaluation on SMT-COMP benchmarks demonstrates that AquaForte solves numerous instances where state-of-the-art solvers like Z3 and CVC5 timeout, with particular effectiveness on satisfiable formulas. Our work shows that LLMs can provide valuable mathematical intuition for symbolic reasoning, establishing a new paradigm for SMT constraint solving.

  • 6 authors
·
Jan 8

Towards Neural Synthesis for SMT-Assisted Proof-Oriented Programming

Proof-oriented programs mix computational content with proofs of program correctness. However, the human effort involved in programming and proving is still substantial, despite the use of Satisfiability Modulo Theories (SMT) solvers to automate proofs in languages such as F*. Seeking to spur research on using AI to automate the construction of proof-oriented programs, we curate a dataset of 600K lines of open-source F* programs and proofs, including software used in production systems ranging from Windows and Linux, to Python and Firefox. Our dataset includes around 32K top-level F* definitions, each representing a type-directed program and proof synthesis problem -- producing a definition given a formal specification expressed as an F* type. We provide a program-fragment checker that queries F* to check the correctness of candidate solutions. We believe this is the largest corpus of SMT-assisted program proofs coupled with a reproducible program-fragment checker. Grounded in this dataset, we investigate the use of AI to synthesize programs and their proofs in F*, with promising results. Our main finding in that the performance of fine-tuned smaller language models (such as Phi-2 or StarCoder) compare favorably with large language models (such as GPT-4), at a much lower computational cost. We also identify various type-based retrieval augmentation techniques and find that they boost performance significantly. With detailed error analysis and case studies, we identify potential strengths and weaknesses of models and techniques and suggest directions for future improvements.

  • 7 authors
·
May 2, 2024