- IruMozhi: Automatically classifying diglossia in Tamil Tamil, a Dravidian language of South Asia, is a highly diglossic language with two very different registers in everyday use: Literary Tamil (preferred in writing and formal communication) and Spoken Tamil (confined to speech and informal media). Spoken Tamil is under-supported in modern NLP systems. In this paper, we release IruMozhi, a human-annotated dataset of parallel text in Literary and Spoken Tamil. We train classifiers on the task of identifying which variety a text belongs to. We use these models to gauge the availability of pretraining data in Spoken Tamil, to audit the composition of existing labelled datasets for Tamil, and to encourage future work on the variety. 2 authors · Nov 13, 2023
- SiDiaC: Sinhala Diachronic Corpus SiDiaC, the first comprehensive Sinhala Diachronic Corpus, covers a historical span from the 5th to the 20th century CE. SiDiaC comprises 58k words across 46 literary works, annotated carefully based on the written date, after filtering based on availability, authorship, copyright compliance, and data attribution. Texts from the National Library of Sri Lanka were digitised using Google Document AI OCR, followed by post-processing to correct formatting and modernise the orthography. The construction of SiDiaC was informed by practices from other corpora, such as FarPaHC, particularly in syntactic annotation and text normalisation strategies, due to the shared characteristics of low-resourced language status. This corpus is categorised based on genres into two layers: primary and secondary. Primary categorisation is binary, classifying each book into Non-Fiction or Fiction, while the secondary categorisation is more specific, grouping texts under Religious, History, Poetry, Language, and Medical genres. Despite challenges including limited access to rare texts and reliance on secondary date sources, SiDiaC serves as a foundational resource for Sinhala NLP, significantly extending the resources available for Sinhala, enabling diachronic studies in lexical change, neologism tracking, historical syntax, and corpus-based lexicography. 2 authors · Sep 22, 2025
3 Tamil-Llama: A New Tamil Language Model Based on Llama 2 Language modeling has witnessed remarkable advancements in recent years, with Large Language Models (LLMs) like ChatGPT setting unparalleled benchmarks in human-like text generation. However, a prevailing limitation is the underrepresentation of languages like Tamil in these cutting-edge models, leading to suboptimal performance in diverse linguistic contexts. This paper addresses this lacuna, enhancing the open-source LLaMA model with an addition of 16,000 Tamil tokens, aiming to achieve superior text generation and comprehension in the Tamil language. We strategically employ the LoRA methodology for efficient model training on a comprehensive Tamil corpus, ensuring computational feasibility and model robustness. Moreover, we introduce a Tamil-translated version of the Alpaca dataset and a subset of the OpenOrca dataset tailored for instruction fine-tuning. Our results showcase significant performance improvements in Tamil text generation, with potential implications for the broader landscape of LLMs in Indian languages. We further underscore our commitment to open research by making our models, datasets, and code publicly accessible, fostering further innovations in language modeling. 1 authors · Nov 9, 2023