Datasets:
Unnamed: 0
int64 0
763k
| kind
stringclasses 2
values | source
stringclasses 5
values | fold
stringclasses 5
values | year
float64 1.99k
2.02k
| orig
stringclasses 231
values | dest
stringclasses 231
values | x
float64 0
985k
| y
float64 0
1.04M
|
|---|---|---|---|---|---|---|---|---|
0
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
BEL
| 265.8
| 435.84283
|
1
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
BGR
| 1,156.9
| 563.4307
|
2
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
CHE
| 2,455.6
| 1,784.3075
|
3
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
CYP
| 32
| 59.130985
|
4
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
DEU
| 14,245.8
| 14,956.544
|
5
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
DNK
| 224.1
| 306.25037
|
6
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
EST
| 29.5
| 67.82613
|
7
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
FIN
| 108.1
| 184.8558
|
8
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
HRV
| 1,281.3
| 895.652
|
9
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
HUN
| 3,455.3
| 4,189.3896
|
10
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
IRL
| 166.8
| 326.12753
|
11
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
ISL
| 29.1
| 28.900314
|
12
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
ITA
| 1,440.4
| 1,716.5468
|
13
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
LIE
| 125.1
| 210.239
|
14
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
LTU
| 50.9
| 174.46758
|
15
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
LVA
| 57.6
| 123.04902
|
16
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
MLT
| 24.2
| 27.652607
|
17
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
NOR
| 157.4
| 258.94217
|
18
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
POL
| 2,971.5
| 4,684.278
|
19
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
PRT
| 282.5
| 194.7011
|
20
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
ROU
| 3,842.4
| 6,312.44
|
21
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
SVK
| 2,312.1
| 1,359.0314
|
22
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
SVN
| 542.7
| 714.98425
|
23
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
AUT
|
SWE
| 454.9
| 660.6436
|
24
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
AUT
| 344.3
| 506.532
|
25
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
CHE
| 1,002.1
| 1,438.7233
|
26
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
CZE
| 312.5
| 389.7095
|
27
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
DEU
| 3,479.5
| 4,232.1577
|
28
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
DNK
| 334.7
| 433.15054
|
29
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
ESP
| 3,335.3
| 3,303.9502
|
30
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
FIN
| 254.8
| 232.67583
|
31
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
FRA
| 13,451.2
| 12,100.666
|
32
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
HRV
| 103
| 162.0624
|
33
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
HUN
| 439.8
| 559.78595
|
34
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
ITA
| 2,030.5
| 2,938.1177
|
35
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
LTU
| 81.4
| 131.0801
|
36
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
LUX
| 1,636.3
| 2,181.4026
|
37
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
LVA
| 99.6
| 82.30625
|
38
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
NOR
| 294.1
| 370.45218
|
39
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
PRT
| 1,416.7
| 823.8594
|
40
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
ROU
| 2,042
| 749.09564
|
41
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
SVK
| 315.6
| 246.88145
|
42
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
SVN
| 107.7
| 70.244316
|
43
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BEL
|
SWE
| 579.1
| 589.0935
|
44
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
AUT
| 2,611.9
| 2,791.4573
|
45
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
BEL
| 2,704.3
| 2,969.419
|
46
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
CHE
| 450.6
| 617.9871
|
47
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
CYP
| 869.4
| 508.87448
|
48
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
CZE
| 989.7
| 573.93286
|
49
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
DEU
| 17,283.7
| 16,525.758
|
50
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
DNK
| 888.8
| 703.31934
|
51
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
ESP
| 8,061.3
| 8,649.957
|
52
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
EST
| 37.5
| 79.947044
|
53
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
FIN
| 169.4
| 368.64505
|
54
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
FRA
| 1,249.4
| 1,601.6003
|
55
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
ISL
| 16.2
| 47.795727
|
56
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
ITA
| 8,151.7
| 9,011.945
|
57
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
LIE
| 0.7
| 4.092217
|
58
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
LTU
| 31.2
| 56.235683
|
59
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
LUX
| 46.8
| 84.96943
|
60
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
LVA
| 67.9
| 38.10982
|
61
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
MLT
| 61.7
| 39.94115
|
62
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
NOR
| 529.6
| 544.4056
|
63
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
POL
| 1,073.3
| 411.24857
|
64
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
PRT
| 1,084
| 364.2148
|
65
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
ROU
| 649.4
| 603.29626
|
66
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
SVK
| 390.1
| 506.8726
|
67
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
SVN
| 567.7
| 411.62726
|
68
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
BGR
|
SWE
| 807.8
| 1,406.6085
|
69
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
AUT
| 1,567.5
| 1,341.4968
|
70
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
CYP
| 56.6
| 33.382317
|
71
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
CZE
| 419
| 505.45453
|
72
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
DEU
| 12,743.1
| 11,751.437
|
73
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
DNK
| 371.3
| 456.94766
|
74
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
ESP
| 2,992
| 3,646.418
|
75
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
EST
| 33.9
| 44.834362
|
76
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
FIN
| 305.5
| 231.0143
|
77
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
FRA
| 9,023.8
| 6,001.576
|
78
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
GRC
| 449.9
| 486.70853
|
79
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
HRV
| 381.9
| 245.16962
|
80
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
HUN
| 804.6
| 714.8738
|
81
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
IRL
| 261.9
| 453.17676
|
82
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
ISL
| 32.2
| 41.248158
|
83
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
ITA
| 6,416
| 7,508.8467
|
84
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
LIE
| 396
| 409.04602
|
85
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
LUX
| 207.3
| 293.88428
|
86
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
LVA
| 69.3
| 95.96142
|
87
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
MLT
| 56.2
| 41.802433
|
88
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
NOR
| 272
| 404.20352
|
89
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
POL
| 1,110.4
| 1,274.6232
|
90
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
PRT
| 4,736.2
| 4,144.034
|
91
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
ROU
| 578.5
| 751.373
|
92
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
SVK
| 501.8
| 306.014
|
93
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CHE
|
SVN
| 147.3
| 356.01648
|
94
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CYP
|
AUT
| 36.5
| 45.612373
|
95
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CYP
|
BGR
| 448.7
| 222.50162
|
96
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CYP
|
CHE
| 58
| 67.4531
|
97
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CYP
|
CZE
| 60.2
| 52.05166
|
98
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CYP
|
DEU
| 502.6
| 374.4708
|
99
|
Train
|
Quantmig
|
Fold 1
| 2,009
|
CYP
|
DNK
| 33.8
| 38.884377
|
Deep learning four decades of human migration: datasets
This repository contains all migration flow estimates associated with the paper "Deep learning four decades of human migration." Evaluation code, training data, trained neural networks, and smaller flow datasets are available in the main GitHub repository, which also provides detailed instructions on data sourcing. Due to file size limits, the larger datasets are archived here. The repository contains three folders:
Estimates
This folder contains all the migration estimates. Data is available in both NetCDF (.nc) and CSV (.csv) formats. The NetCDF format is more compact and pre-indexed, making it suitable for large files. In Python, datasets can be opened as xarray.Dataset objects, enabling coordinate-based data selection.
Each dataset uses the following coordinate conventions:
- Year: 1990–2023
- Birth ISO: Country of birth (UN ISO3)
- Origin ISO: Country of origin (UN ISO3)
- Destination ISO: Destination country (UN ISO3)
- Country ISO: Used for net migration data (UN ISO3)
The following data files are provided:
- T.nc: Full table of flows disaggregated by country of birth. Dimensions: Year, Birth ISO, Origin ISO, Destination ISO
- flows.nc: Total origin-destination flows (equivalent to
Tsummed over Birth ISO). Dimensions: Year, Origin ISO, Destination ISO - net_migration.nc: Net migration data by country. Dimensions: Year, Country ISO
- stocks.nc: Stock estimates for each country pair. Dimensions: Year, Origin ISO (corresponding to Birth ISO), Destination ISO
- test_flows.nc: Flow estimates on a randomly selected set of test edges, used for model validation
Additionally, two CSV files are provided for convenience:
- mig_unilateral.csv: Unilateral migration estimates per country, comprising:
imm: Total immigration flowsemi: Total emigration flowsnet: Net migrationimm_pop: Total immigrant population (non-native-born)emi_pop: Total emigrant population (living abroad)
- mig_bilateral.csv: Bilateral flow data, comprising:
mig_prev: Total origin-destination flowsmig_brth: Total birth-destination flows, whereOrigin ISOreflects place of birth
Each dataset includes a mean variable (mean estimate) and a std variable (standard deviation of the estimate).
An ISO3 conversion table is also provided.
Data
The Data contains all the data used to train, evaluate, and test the neural network.
It is stored thematically in different folders, and most folders again contains its own README file to further
explain the specific sources and imputation methods. All data is given both as a .csv file and a .nc file, and
follows the ISO3-naming convention outlined in the main README.
Training_data
This folder contains all the tensors used to train the neural network. All data is given as a PyTorch
tensor (.pt) and can be loaded using torch.load(). The folder contains targets, weights, masks, input covariates (scaled
and unscaled), and the edge indices of each input. See the folder README for further details.
Net migration (Net_migration)
This folder contains net migration data, sourced from national statistical offices, together with a list of sources and the UN WPP net migration figures.
GDP indicators (GDP_data)
This folder contains data on GDP/capita, GDP growth, nominal GDP, and other GDP-related indicators for all countries and years included in the training period.
Gravity covariates (Gravity_datasets)
Demographic indicators (UN_WPP_data)
Migrant stocks (UN_stock_data)
Refugee figures (UNHCR_data)
Total number of refugees, asylum-seekers, and other people in need of international protection, taken from the UNHCR dataset.
Conflict deaths (UCDP_data)
This folder contains data on deaths in conflict provided by UCDP Georeferenced Event dataset. NaN values are filled with 0.
Bilateral flows (Flow_data)
Trained networks
Contains the ensemble of trained neural networks
- Downloads last month
- 221