Dataset Viewer
Auto-converted to Parquet Duplicate
Unnamed: 0
int64
0
763k
kind
stringclasses
2 values
source
stringclasses
5 values
fold
stringclasses
5 values
year
float64
1.99k
2.02k
orig
stringclasses
231 values
dest
stringclasses
231 values
x
float64
0
985k
y
float64
0
1.04M
0
Train
Quantmig
Fold 1
2,009
AUT
BEL
265.8
435.84283
1
Train
Quantmig
Fold 1
2,009
AUT
BGR
1,156.9
563.4307
2
Train
Quantmig
Fold 1
2,009
AUT
CHE
2,455.6
1,784.3075
3
Train
Quantmig
Fold 1
2,009
AUT
CYP
32
59.130985
4
Train
Quantmig
Fold 1
2,009
AUT
DEU
14,245.8
14,956.544
5
Train
Quantmig
Fold 1
2,009
AUT
DNK
224.1
306.25037
6
Train
Quantmig
Fold 1
2,009
AUT
EST
29.5
67.82613
7
Train
Quantmig
Fold 1
2,009
AUT
FIN
108.1
184.8558
8
Train
Quantmig
Fold 1
2,009
AUT
HRV
1,281.3
895.652
9
Train
Quantmig
Fold 1
2,009
AUT
HUN
3,455.3
4,189.3896
10
Train
Quantmig
Fold 1
2,009
AUT
IRL
166.8
326.12753
11
Train
Quantmig
Fold 1
2,009
AUT
ISL
29.1
28.900314
12
Train
Quantmig
Fold 1
2,009
AUT
ITA
1,440.4
1,716.5468
13
Train
Quantmig
Fold 1
2,009
AUT
LIE
125.1
210.239
14
Train
Quantmig
Fold 1
2,009
AUT
LTU
50.9
174.46758
15
Train
Quantmig
Fold 1
2,009
AUT
LVA
57.6
123.04902
16
Train
Quantmig
Fold 1
2,009
AUT
MLT
24.2
27.652607
17
Train
Quantmig
Fold 1
2,009
AUT
NOR
157.4
258.94217
18
Train
Quantmig
Fold 1
2,009
AUT
POL
2,971.5
4,684.278
19
Train
Quantmig
Fold 1
2,009
AUT
PRT
282.5
194.7011
20
Train
Quantmig
Fold 1
2,009
AUT
ROU
3,842.4
6,312.44
21
Train
Quantmig
Fold 1
2,009
AUT
SVK
2,312.1
1,359.0314
22
Train
Quantmig
Fold 1
2,009
AUT
SVN
542.7
714.98425
23
Train
Quantmig
Fold 1
2,009
AUT
SWE
454.9
660.6436
24
Train
Quantmig
Fold 1
2,009
BEL
AUT
344.3
506.532
25
Train
Quantmig
Fold 1
2,009
BEL
CHE
1,002.1
1,438.7233
26
Train
Quantmig
Fold 1
2,009
BEL
CZE
312.5
389.7095
27
Train
Quantmig
Fold 1
2,009
BEL
DEU
3,479.5
4,232.1577
28
Train
Quantmig
Fold 1
2,009
BEL
DNK
334.7
433.15054
29
Train
Quantmig
Fold 1
2,009
BEL
ESP
3,335.3
3,303.9502
30
Train
Quantmig
Fold 1
2,009
BEL
FIN
254.8
232.67583
31
Train
Quantmig
Fold 1
2,009
BEL
FRA
13,451.2
12,100.666
32
Train
Quantmig
Fold 1
2,009
BEL
HRV
103
162.0624
33
Train
Quantmig
Fold 1
2,009
BEL
HUN
439.8
559.78595
34
Train
Quantmig
Fold 1
2,009
BEL
ITA
2,030.5
2,938.1177
35
Train
Quantmig
Fold 1
2,009
BEL
LTU
81.4
131.0801
36
Train
Quantmig
Fold 1
2,009
BEL
LUX
1,636.3
2,181.4026
37
Train
Quantmig
Fold 1
2,009
BEL
LVA
99.6
82.30625
38
Train
Quantmig
Fold 1
2,009
BEL
NOR
294.1
370.45218
39
Train
Quantmig
Fold 1
2,009
BEL
PRT
1,416.7
823.8594
40
Train
Quantmig
Fold 1
2,009
BEL
ROU
2,042
749.09564
41
Train
Quantmig
Fold 1
2,009
BEL
SVK
315.6
246.88145
42
Train
Quantmig
Fold 1
2,009
BEL
SVN
107.7
70.244316
43
Train
Quantmig
Fold 1
2,009
BEL
SWE
579.1
589.0935
44
Train
Quantmig
Fold 1
2,009
BGR
AUT
2,611.9
2,791.4573
45
Train
Quantmig
Fold 1
2,009
BGR
BEL
2,704.3
2,969.419
46
Train
Quantmig
Fold 1
2,009
BGR
CHE
450.6
617.9871
47
Train
Quantmig
Fold 1
2,009
BGR
CYP
869.4
508.87448
48
Train
Quantmig
Fold 1
2,009
BGR
CZE
989.7
573.93286
49
Train
Quantmig
Fold 1
2,009
BGR
DEU
17,283.7
16,525.758
50
Train
Quantmig
Fold 1
2,009
BGR
DNK
888.8
703.31934
51
Train
Quantmig
Fold 1
2,009
BGR
ESP
8,061.3
8,649.957
52
Train
Quantmig
Fold 1
2,009
BGR
EST
37.5
79.947044
53
Train
Quantmig
Fold 1
2,009
BGR
FIN
169.4
368.64505
54
Train
Quantmig
Fold 1
2,009
BGR
FRA
1,249.4
1,601.6003
55
Train
Quantmig
Fold 1
2,009
BGR
ISL
16.2
47.795727
56
Train
Quantmig
Fold 1
2,009
BGR
ITA
8,151.7
9,011.945
57
Train
Quantmig
Fold 1
2,009
BGR
LIE
0.7
4.092217
58
Train
Quantmig
Fold 1
2,009
BGR
LTU
31.2
56.235683
59
Train
Quantmig
Fold 1
2,009
BGR
LUX
46.8
84.96943
60
Train
Quantmig
Fold 1
2,009
BGR
LVA
67.9
38.10982
61
Train
Quantmig
Fold 1
2,009
BGR
MLT
61.7
39.94115
62
Train
Quantmig
Fold 1
2,009
BGR
NOR
529.6
544.4056
63
Train
Quantmig
Fold 1
2,009
BGR
POL
1,073.3
411.24857
64
Train
Quantmig
Fold 1
2,009
BGR
PRT
1,084
364.2148
65
Train
Quantmig
Fold 1
2,009
BGR
ROU
649.4
603.29626
66
Train
Quantmig
Fold 1
2,009
BGR
SVK
390.1
506.8726
67
Train
Quantmig
Fold 1
2,009
BGR
SVN
567.7
411.62726
68
Train
Quantmig
Fold 1
2,009
BGR
SWE
807.8
1,406.6085
69
Train
Quantmig
Fold 1
2,009
CHE
AUT
1,567.5
1,341.4968
70
Train
Quantmig
Fold 1
2,009
CHE
CYP
56.6
33.382317
71
Train
Quantmig
Fold 1
2,009
CHE
CZE
419
505.45453
72
Train
Quantmig
Fold 1
2,009
CHE
DEU
12,743.1
11,751.437
73
Train
Quantmig
Fold 1
2,009
CHE
DNK
371.3
456.94766
74
Train
Quantmig
Fold 1
2,009
CHE
ESP
2,992
3,646.418
75
Train
Quantmig
Fold 1
2,009
CHE
EST
33.9
44.834362
76
Train
Quantmig
Fold 1
2,009
CHE
FIN
305.5
231.0143
77
Train
Quantmig
Fold 1
2,009
CHE
FRA
9,023.8
6,001.576
78
Train
Quantmig
Fold 1
2,009
CHE
GRC
449.9
486.70853
79
Train
Quantmig
Fold 1
2,009
CHE
HRV
381.9
245.16962
80
Train
Quantmig
Fold 1
2,009
CHE
HUN
804.6
714.8738
81
Train
Quantmig
Fold 1
2,009
CHE
IRL
261.9
453.17676
82
Train
Quantmig
Fold 1
2,009
CHE
ISL
32.2
41.248158
83
Train
Quantmig
Fold 1
2,009
CHE
ITA
6,416
7,508.8467
84
Train
Quantmig
Fold 1
2,009
CHE
LIE
396
409.04602
85
Train
Quantmig
Fold 1
2,009
CHE
LUX
207.3
293.88428
86
Train
Quantmig
Fold 1
2,009
CHE
LVA
69.3
95.96142
87
Train
Quantmig
Fold 1
2,009
CHE
MLT
56.2
41.802433
88
Train
Quantmig
Fold 1
2,009
CHE
NOR
272
404.20352
89
Train
Quantmig
Fold 1
2,009
CHE
POL
1,110.4
1,274.6232
90
Train
Quantmig
Fold 1
2,009
CHE
PRT
4,736.2
4,144.034
91
Train
Quantmig
Fold 1
2,009
CHE
ROU
578.5
751.373
92
Train
Quantmig
Fold 1
2,009
CHE
SVK
501.8
306.014
93
Train
Quantmig
Fold 1
2,009
CHE
SVN
147.3
356.01648
94
Train
Quantmig
Fold 1
2,009
CYP
AUT
36.5
45.612373
95
Train
Quantmig
Fold 1
2,009
CYP
BGR
448.7
222.50162
96
Train
Quantmig
Fold 1
2,009
CYP
CHE
58
67.4531
97
Train
Quantmig
Fold 1
2,009
CYP
CZE
60.2
52.05166
98
Train
Quantmig
Fold 1
2,009
CYP
DEU
502.6
374.4708
99
Train
Quantmig
Fold 1
2,009
CYP
DNK
33.8
38.884377
End of preview. Expand in Data Studio

Deep learning four decades of human migration: datasets

This repository contains all migration flow estimates associated with the paper "Deep learning four decades of human migration." Evaluation code, training data, trained neural networks, and smaller flow datasets are available in the main GitHub repository, which also provides detailed instructions on data sourcing. Due to file size limits, the larger datasets are archived here. The repository contains three folders:

Estimates

This folder contains all the migration estimates. Data is available in both NetCDF (.nc) and CSV (.csv) formats. The NetCDF format is more compact and pre-indexed, making it suitable for large files. In Python, datasets can be opened as xarray.Dataset objects, enabling coordinate-based data selection.

Each dataset uses the following coordinate conventions:

  • Year: 1990–2023
  • Birth ISO: Country of birth (UN ISO3)
  • Origin ISO: Country of origin (UN ISO3)
  • Destination ISO: Destination country (UN ISO3)
  • Country ISO: Used for net migration data (UN ISO3)

The following data files are provided:

  • T.nc: Full table of flows disaggregated by country of birth. Dimensions: Year, Birth ISO, Origin ISO, Destination ISO
  • flows.nc: Total origin-destination flows (equivalent to T summed over Birth ISO). Dimensions: Year, Origin ISO, Destination ISO
  • net_migration.nc: Net migration data by country. Dimensions: Year, Country ISO
  • stocks.nc: Stock estimates for each country pair. Dimensions: Year, Origin ISO (corresponding to Birth ISO), Destination ISO
  • test_flows.nc: Flow estimates on a randomly selected set of test edges, used for model validation

Additionally, two CSV files are provided for convenience:

  • mig_unilateral.csv: Unilateral migration estimates per country, comprising:
    • imm: Total immigration flows
    • emi: Total emigration flows
    • net: Net migration
    • imm_pop: Total immigrant population (non-native-born)
    • emi_pop: Total emigrant population (living abroad)
  • mig_bilateral.csv: Bilateral flow data, comprising:
    • mig_prev: Total origin-destination flows
    • mig_brth: Total birth-destination flows, where Origin ISO reflects place of birth

Each dataset includes a mean variable (mean estimate) and a std variable (standard deviation of the estimate).

An ISO3 conversion table is also provided.

Data

The Data contains all the data used to train, evaluate, and test the neural network. It is stored thematically in different folders, and most folders again contains its own README file to further explain the specific sources and imputation methods. All data is given both as a .csv file and a .nc file, and follows the ISO3-naming convention outlined in the main README.

Training_data

This folder contains all the tensors used to train the neural network. All data is given as a PyTorch tensor (.pt) and can be loaded using torch.load(). The folder contains targets, weights, masks, input covariates (scaled and unscaled), and the edge indices of each input. See the folder README for further details.

Net migration (Net_migration)

This folder contains net migration data, sourced from national statistical offices, together with a list of sources and the UN WPP net migration figures.

GDP indicators (GDP_data)

This folder contains data on GDP/capita, GDP growth, nominal GDP, and other GDP-related indicators for all countries and years included in the training period.

Gravity covariates (Gravity_datasets)

Demographic indicators (UN_WPP_data)

Migrant stocks (UN_stock_data)

Refugee figures (UNHCR_data)

Total number of refugees, asylum-seekers, and other people in need of international protection, taken from the UNHCR dataset.

Conflict deaths (UCDP_data)

This folder contains data on deaths in conflict provided by UCDP Georeferenced Event dataset. NaN values are filled with 0.

Bilateral flows (Flow_data)

Trained networks

Contains the ensemble of trained neural networks

Downloads last month
221

Paper for ThGaskin/Migration_flows