Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOmniHuman-1: Rethinking the Scaling-Up of One-Stage Conditioned Human Animation Models
End-to-end human animation, such as audio-driven talking human generation, has undergone notable advancements in the recent few years. However, existing methods still struggle to scale up as large general video generation models, limiting their potential in real applications. In this paper, we propose OmniHuman, a Diffusion Transformer-based framework that scales up data by mixing motion-related conditions into the training phase. To this end, we introduce two training principles for these mixed conditions, along with the corresponding model architecture and inference strategy. These designs enable OmniHuman to fully leverage data-driven motion generation, ultimately achieving highly realistic human video generation. More importantly, OmniHuman supports various portrait contents (face close-up, portrait, half-body, full-body), supports both talking and singing, handles human-object interactions and challenging body poses, and accommodates different image styles. Compared to existing end-to-end audio-driven methods, OmniHuman not only produces more realistic videos, but also offers greater flexibility in inputs. It also supports multiple driving modalities (audio-driven, video-driven and combined driving signals). Video samples are provided on the ttfamily project page (https://omnihuman-lab.github.io)
Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation
Character Animation aims to generating character videos from still images through driving signals. Currently, diffusion models have become the mainstream in visual generation research, owing to their robust generative capabilities. However, challenges persist in the realm of image-to-video, especially in character animation, where temporally maintaining consistency with detailed information from character remains a formidable problem. In this paper, we leverage the power of diffusion models and propose a novel framework tailored for character animation. To preserve consistency of intricate appearance features from reference image, we design ReferenceNet to merge detail features via spatial attention. To ensure controllability and continuity, we introduce an efficient pose guider to direct character's movements and employ an effective temporal modeling approach to ensure smooth inter-frame transitions between video frames. By expanding the training data, our approach can animate arbitrary characters, yielding superior results in character animation compared to other image-to-video methods. Furthermore, we evaluate our method on benchmarks for fashion video and human dance synthesis, achieving state-of-the-art results.
X-Portrait: Expressive Portrait Animation with Hierarchical Motion Attention
We propose X-Portrait, an innovative conditional diffusion model tailored for generating expressive and temporally coherent portrait animation. Specifically, given a single portrait as appearance reference, we aim to animate it with motion derived from a driving video, capturing both highly dynamic and subtle facial expressions along with wide-range head movements. As its core, we leverage the generative prior of a pre-trained diffusion model as the rendering backbone, while achieve fine-grained head pose and expression control with novel controlling signals within the framework of ControlNet. In contrast to conventional coarse explicit controls such as facial landmarks, our motion control module is learned to interpret the dynamics directly from the original driving RGB inputs. The motion accuracy is further enhanced with a patch-based local control module that effectively enhance the motion attention to small-scale nuances like eyeball positions. Notably, to mitigate the identity leakage from the driving signals, we train our motion control modules with scaling-augmented cross-identity images, ensuring maximized disentanglement from the appearance reference modules. Experimental results demonstrate the universal effectiveness of X-Portrait across a diverse range of facial portraits and expressive driving sequences, and showcase its proficiency in generating captivating portrait animations with consistently maintained identity characteristics.
FaceCraft4D: Animated 3D Facial Avatar Generation from a Single Image
We present a novel framework for generating high-quality, animatable 4D avatar from a single image. While recent advances have shown promising results in 4D avatar creation, existing methods either require extensive multiview data or struggle with shape accuracy and identity consistency. To address these limitations, we propose a comprehensive system that leverages shape, image, and video priors to create full-view, animatable avatars. Our approach first obtains initial coarse shape through 3D-GAN inversion. Then, it enhances multiview textures using depth-guided warping signals for cross-view consistency with the help of the image diffusion model. To handle expression animation, we incorporate a video prior with synchronized driving signals across viewpoints. We further introduce a Consistent-Inconsistent training to effectively handle data inconsistencies during 4D reconstruction. Experimental results demonstrate that our method achieves superior quality compared to the prior art, while maintaining consistency across different viewpoints and expressions.
Free-viewpoint Human Animation with Pose-correlated Reference Selection
Diffusion-based human animation aims to animate a human character based on a source human image as well as driving signals such as a sequence of poses. Leveraging the generative capacity of diffusion model, existing approaches are able to generate high-fidelity poses, but struggle with significant viewpoint changes, especially in zoom-in/zoom-out scenarios where camera-character distance varies. This limits the applications such as cinematic shot type plan or camera control. We propose a pose-correlated reference selection diffusion network, supporting substantial viewpoint variations in human animation. Our key idea is to enable the network to utilize multiple reference images as input, since significant viewpoint changes often lead to missing appearance details on the human body. To eliminate the computational cost, we first introduce a novel pose correlation module to compute similarities between non-aligned target and source poses, and then propose an adaptive reference selection strategy, utilizing the attention map to identify key regions for animation generation. To train our model, we curated a large dataset from public TED talks featuring varied shots of the same character, helping the model learn synthesis for different perspectives. Our experimental results show that with the same number of reference images, our model performs favorably compared to the current SOTA methods under large viewpoint change. We further show that the adaptive reference selection is able to choose the most relevant reference regions to generate humans under free viewpoints.
Audio-visual Controlled Video Diffusion with Masked Selective State Spaces Modeling for Natural Talking Head Generation
Talking head synthesis is vital for virtual avatars and human-computer interaction. However, most existing methods are typically limited to accepting control from a single primary modality, restricting their practical utility. To this end, we introduce ACTalker, an end-to-end video diffusion framework that supports both multi-signals control and single-signal control for talking head video generation. For multiple control, we design a parallel mamba structure with multiple branches, each utilizing a separate driving signal to control specific facial regions. A gate mechanism is applied across all branches, providing flexible control over video generation. To ensure natural coordination of the controlled video both temporally and spatially, we employ the mamba structure, which enables driving signals to manipulate feature tokens across both dimensions in each branch. Additionally, we introduce a mask-drop strategy that allows each driving signal to independently control its corresponding facial region within the mamba structure, preventing control conflicts. Experimental results demonstrate that our method produces natural-looking facial videos driven by diverse signals and that the mamba layer seamlessly integrates multiple driving modalities without conflict.
Think-Before-Draw: Decomposing Emotion Semantics & Fine-Grained Controllable Expressive Talking Head Generation
Emotional talking-head generation has emerged as a pivotal research area at the intersection of computer vision and multimodal artificial intelligence, with its core value lying in enhancing human-computer interaction through immersive and empathetic engagement.With the advancement of multimodal large language models, the driving signals for emotional talking-head generation has shifted from audio and video to more flexible text. However, current text-driven methods rely on predefined discrete emotion label texts, oversimplifying the dynamic complexity of real facial muscle movements and thus failing to achieve natural emotional expressiveness.This study proposes the Think-Before-Draw framework to address two key challenges: (1) In-depth semantic parsing of emotions--by innovatively introducing Chain-of-Thought (CoT), abstract emotion labels are transformed into physiologically grounded facial muscle movement descriptions, enabling the mapping from high-level semantics to actionable motion features; and (2) Fine-grained expressiveness optimization--inspired by artists' portrait painting process, a progressive guidance denoising strategy is proposed, employing a "global emotion localization--local muscle control" mechanism to refine micro-expression dynamics in generated videos.Our experiments demonstrate that our approach achieves state-of-the-art performance on widely-used benchmarks, including MEAD and HDTF. Additionally, we collected a set of portrait images to evaluate our model's zero-shot generation capability.
GAS: Generative Avatar Synthesis from a Single Image
We introduce a generalizable and unified framework to synthesize view-consistent and temporally coherent avatars from a single image, addressing the challenging problem of single-image avatar generation. While recent methods employ diffusion models conditioned on human templates like depth or normal maps, they often struggle to preserve appearance information due to the discrepancy between sparse driving signals and the actual human subject, resulting in multi-view and temporal inconsistencies. Our approach bridges this gap by combining the reconstruction power of regression-based 3D human reconstruction with the generative capabilities of a diffusion model. The dense driving signal from the initial reconstructed human provides comprehensive conditioning, ensuring high-quality synthesis faithful to the reference appearance and structure. Additionally, we propose a unified framework that enables the generalization learned from novel pose synthesis on in-the-wild videos to naturally transfer to novel view synthesis. Our video-based diffusion model enhances disentangled synthesis with high-quality view-consistent renderings for novel views and realistic non-rigid deformations in novel pose animation. Results demonstrate the superior generalization ability of our method across in-domain and out-of-domain in-the-wild datasets. Project page: https://humansensinglab.github.io/GAS/
DEGAS: Detailed Expressions on Full-Body Gaussian Avatars
Although neural rendering has made significant advances in creating lifelike, animatable full-body and head avatars, incorporating detailed expressions into full-body avatars remains largely unexplored. We present DEGAS, the first 3D Gaussian Splatting (3DGS)-based modeling method for full-body avatars with rich facial expressions. Trained on multiview videos of a given subject, our method learns a conditional variational autoencoder that takes both the body motion and facial expression as driving signals to generate Gaussian maps in the UV layout. To drive the facial expressions, instead of the commonly used 3D Morphable Models (3DMMs) in 3D head avatars, we propose to adopt the expression latent space trained solely on 2D portrait images, bridging the gap between 2D talking faces and 3D avatars. Leveraging the rendering capability of 3DGS and the rich expressiveness of the expression latent space, the learned avatars can be reenacted to reproduce photorealistic rendering images with subtle and accurate facial expressions. Experiments on an existing dataset and our newly proposed dataset of full-body talking avatars demonstrate the efficacy of our method. We also propose an audio-driven extension of our method with the help of 2D talking faces, opening new possibilities for interactive AI agents.
Knot Forcing: Taming Autoregressive Video Diffusion Models for Real-time Infinite Interactive Portrait Animation
Real-time portrait animation is essential for interactive applications such as virtual assistants and live avatars, requiring high visual fidelity, temporal coherence, ultra-low latency, and responsive control from dynamic inputs like reference images and driving signals. While diffusion-based models achieve strong quality, their non-causal nature hinders streaming deployment. Causal autoregressive video generation approaches enable efficient frame-by-frame generation but suffer from error accumulation, motion discontinuities at chunk boundaries, and degraded long-term consistency. In this work, we present a novel streaming framework named Knot Forcing for real-time portrait animation that addresses these challenges through three key designs: (1) a chunk-wise generation strategy with global identity preservation via cached KV states of the reference image and local temporal modeling using sliding window attention; (2) a temporal knot module that overlaps adjacent chunks and propagates spatio-temporal cues via image-to-video conditioning to smooth inter-chunk motion transitions; and (3) A "running ahead" mechanism that dynamically updates the reference frame's temporal coordinate during inference, keeping its semantic context ahead of the current rollout frame to support long-term coherence. Knot Forcing enables high-fidelity, temporally consistent, and interactive portrait animation over infinite sequences, achieving real-time performance with strong visual stability on consumer-grade GPUs.
MVPortrait: Text-Guided Motion and Emotion Control for Multi-view Vivid Portrait Animation
Recent portrait animation methods have made significant strides in generating realistic lip synchronization. However, they often lack explicit control over head movements and facial expressions, and cannot produce videos from multiple viewpoints, resulting in less controllable and expressive animations. Moreover, text-guided portrait animation remains underexplored, despite its user-friendly nature. We present a novel two-stage text-guided framework, MVPortrait (Multi-view Vivid Portrait), to generate expressive multi-view portrait animations that faithfully capture the described motion and emotion. MVPortrait is the first to introduce FLAME as an intermediate representation, effectively embedding facial movements, expressions, and view transformations within its parameter space. In the first stage, we separately train the FLAME motion and emotion diffusion models based on text input. In the second stage, we train a multi-view video generation model conditioned on a reference portrait image and multi-view FLAME rendering sequences from the first stage. Experimental results exhibit that MVPortrait outperforms existing methods in terms of motion and emotion control, as well as view consistency. Furthermore, by leveraging FLAME as a bridge, MVPortrait becomes the first controllable portrait animation framework that is compatible with text, speech, and video as driving signals.
UL-DD: A Multimodal Drowsiness Dataset Using Video, Biometric Signals, and Behavioral Data
In this study, we present a comprehensive public dataset for driver drowsiness detection, integrating multimodal signals of facial, behavioral, and biometric indicators. Our dataset includes 3D facial video using a depth camera, IR camera footage, posterior videos, and biometric signals such as heart rate, electrodermal activity, blood oxygen saturation, skin temperature, and accelerometer data. This data set provides grip sensor data from the steering wheel and telemetry data from the American truck simulator game to provide more information about drivers' behavior while they are alert and drowsy. Drowsiness levels were self-reported every four minutes using the Karolinska Sleepiness Scale (KSS). The simulation environment consists of three monitor setups, and the driving condition is completely like a car. Data were collected from 19 subjects (15 M, 4 F) in two conditions: when they were fully alert and when they exhibited signs of sleepiness. Unlike other datasets, our multimodal dataset has a continuous duration of 40 minutes for each data collection session per subject, contributing to a total length of 1,400 minutes, and we recorded gradual changes in the driver state rather than discrete alert/drowsy labels. This study aims to create a comprehensive multimodal dataset of driver drowsiness that captures a wider range of physiological, behavioral, and driving-related signals. The dataset will be available upon request to the corresponding author.
Loopy: Taming Audio-Driven Portrait Avatar with Long-Term Motion Dependency
With the introduction of diffusion-based video generation techniques, audio-conditioned human video generation has recently achieved significant breakthroughs in both the naturalness of motion and the synthesis of portrait details. Due to the limited control of audio signals in driving human motion, existing methods often add auxiliary spatial signals to stabilize movements, which may compromise the naturalness and freedom of motion. In this paper, we propose an end-to-end audio-only conditioned video diffusion model named Loopy. Specifically, we designed an inter- and intra-clip temporal module and an audio-to-latents module, enabling the model to leverage long-term motion information from the data to learn natural motion patterns and improving audio-portrait movement correlation. This method removes the need for manually specified spatial motion templates used in existing methods to constrain motion during inference. Extensive experiments show that Loopy outperforms recent audio-driven portrait diffusion models, delivering more lifelike and high-quality results across various scenarios.
AD-H: Autonomous Driving with Hierarchical Agents
Due to the impressive capabilities of multimodal large language models (MLLMs), recent works have focused on employing MLLM-based agents for autonomous driving in large-scale and dynamic environments. However, prevalent approaches often directly translate high-level instructions into low-level vehicle control signals, which deviates from the inherent language generation paradigm of MLLMs and fails to fully harness their emergent powers. As a result, the generalizability of these methods is highly restricted by autonomous driving datasets used during fine-tuning. To tackle this challenge, we propose to connect high-level instructions and low-level control signals with mid-level language-driven commands, which are more fine-grained than high-level instructions but more universal and explainable than control signals, and thus can effectively bridge the gap in between. We implement this idea through a hierarchical multi-agent driving system named AD-H, including a MLLM planner for high-level reasoning and a lightweight controller for low-level execution. The hierarchical design liberates the MLLM from low-level control signal decoding and therefore fully releases their emergent capability in high-level perception, reasoning, and planning. We build a new dataset with action hierarchy annotations. Comprehensive closed-loop evaluations demonstrate several key advantages of our proposed AD-H system. First, AD-H can notably outperform state-of-the-art methods in achieving exceptional driving performance, even exhibiting self-correction capabilities during vehicle operation, a scenario not encountered in the training dataset. Second, AD-H demonstrates superior generalization under long-horizon instructions and novel environmental conditions, significantly surpassing current state-of-the-art methods. We will make our data and code publicly accessible at https://github.com/zhangzaibin/AD-H
DriVerse: Navigation World Model for Driving Simulation via Multimodal Trajectory Prompting and Motion Alignment
This paper presents DriVerse, a generative model for simulating navigation-driven driving scenes from a single image and a future trajectory. Previous autonomous driving world models either directly feed the trajectory or discrete control signals into the generation pipeline, leading to poor alignment between the control inputs and the implicit features of the 2D base generative model, which results in low-fidelity video outputs. Some methods use coarse textual commands or discrete vehicle control signals, which lack the precision to guide fine-grained, trajectory-specific video generation, making them unsuitable for evaluating actual autonomous driving algorithms. DriVerse introduces explicit trajectory guidance in two complementary forms: it tokenizes trajectories into textual prompts using a predefined trend vocabulary for seamless language integration, and converts 3D trajectories into 2D spatial motion priors to enhance control over static content within the driving scene. To better handle dynamic objects, we further introduce a lightweight motion alignment module, which focuses on the inter-frame consistency of dynamic pixels, significantly enhancing the temporal coherence of moving elements over long sequences. With minimal training and no need for additional data, DriVerse outperforms specialized models on future video generation tasks across both the nuScenes and Waymo datasets. The code and models will be released to the public.
Senna: Bridging Large Vision-Language Models and End-to-End Autonomous Driving
End-to-end autonomous driving demonstrates strong planning capabilities with large-scale data but still struggles in complex, rare scenarios due to limited commonsense. In contrast, Large Vision-Language Models (LVLMs) excel in scene understanding and reasoning. The path forward lies in merging the strengths of both approaches. Previous methods using LVLMs to predict trajectories or control signals yield suboptimal results, as LVLMs are not well-suited for precise numerical predictions. This paper presents Senna, an autonomous driving system combining an LVLM (Senna-VLM) with an end-to-end model (Senna-E2E). Senna decouples high-level planning from low-level trajectory prediction. Senna-VLM generates planning decisions in natural language, while Senna-E2E predicts precise trajectories. Senna-VLM utilizes a multi-image encoding approach and multi-view prompts for efficient scene understanding. Besides, we introduce planning-oriented QAs alongside a three-stage training strategy, which enhances Senna-VLM's planning performance while preserving commonsense. Extensive experiments on two datasets show that Senna achieves state-of-the-art planning performance. Notably, with pre-training on a large-scale dataset DriveX and fine-tuning on nuScenes, Senna significantly reduces average planning error by 27.12% and collision rate by 33.33% over model without pre-training. We believe Senna's cross-scenario generalization and transferability are essential for achieving fully autonomous driving. Code and models will be released at https://github.com/hustvl/Senna.
DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model
In the past decade, autonomous driving has experienced rapid development in both academia and industry. However, its limited interpretability remains a significant unsolved problem, severely hindering autonomous vehicle commercialization and further development. Previous approaches utilizing small language models have failed to address this issue due to their lack of flexibility, generalization ability, and robustness. Recently, multimodal large language models (LLMs) have gained considerable attention from the research community for their capability to process and reason non-text data (e.g., images and videos) by text. In this paper, we present DriveGPT4, an interpretable end-to-end autonomous driving system utilizing LLMs. DriveGPT4 is capable of interpreting vehicle actions and providing corresponding reasoning, as well as answering diverse questions posed by human users for enhanced interaction. Additionally, DriveGPT4 predicts vehicle low-level control signals in an end-to-end fashion. These capabilities stem from a customized visual instruction tuning dataset specifically designed for autonomous driving. To the best of our knowledge, DriveGPT4 is the first work focusing on interpretable end-to-end autonomous driving. When evaluated on multiple tasks alongside conventional methods and video understanding LLMs, DriveGPT4 demonstrates superior qualitative and quantitative performance. Additionally, DriveGPT4 can be generalized in a zero-shot fashion to accommodate more unseen scenarios. The project page is available at https://tonyxuqaq.github.io/projects/DriveGPT4/ .
ReSim: Reliable World Simulation for Autonomous Driving
How can we reliably simulate future driving scenarios under a wide range of ego driving behaviors? Recent driving world models, developed exclusively on real-world driving data composed mainly of safe expert trajectories, struggle to follow hazardous or non-expert behaviors, which are rare in such data. This limitation restricts their applicability to tasks such as policy evaluation. In this work, we address this challenge by enriching real-world human demonstrations with diverse non-expert data collected from a driving simulator (e.g., CARLA), and building a controllable world model trained on this heterogeneous corpus. Starting with a video generator featuring a diffusion transformer architecture, we devise several strategies to effectively integrate conditioning signals and improve prediction controllability and fidelity. The resulting model, ReSim, enables Reliable Simulation of diverse open-world driving scenarios under various actions, including hazardous non-expert ones. To close the gap between high-fidelity simulation and applications that require reward signals to judge different actions, we introduce a Video2Reward module that estimates a reward from ReSim's simulated future. Our ReSim paradigm achieves up to 44% higher visual fidelity, improves controllability for both expert and non-expert actions by over 50%, and boosts planning and policy selection performance on NAVSIM by 2% and 25%, respectively.
Early warning signals: The charted and uncharted territories
The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The potential to identify early warning signals that would allow researchers and managers to predict such events before they happen has therefore been an invaluable discovery that offers a way forward in spite of such seemingly unpredictable behavior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals in advance of a transition in certain contexts. Here we describe the pattern emerging as research continues to explore just how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid regime shifts, a pattern of 'critical slowing down' that can be used to detect the approaching shift, and a mechanism of bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that not all systems that show regime shifts exhibit critical slowing down, or vice versa. Even when systems exhibit critical slowing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlight the need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down, (b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel system; bearing in mind that a positive indication for some systems is a negative indication in others, and (c) statistical methods that can distinguish between signatures of early warning behaviors and noise.
OmniNWM: Omniscient Driving Navigation World Models
Autonomous driving world models are expected to work effectively across three core dimensions: state, action, and reward. Existing models, however, are typically restricted to limited state modalities, short video sequences, imprecise action control, and a lack of reward awareness. In this paper, we introduce OmniNWM, an omniscient panoramic navigation world model that addresses all three dimensions within a unified framework. For state, OmniNWM jointly generates panoramic videos of RGB, semantics, metric depth, and 3D occupancy. A flexible forcing strategy enables high-quality long-horizon auto-regressive generation. For action, we introduce a normalized panoramic Plucker ray-map representation that encodes input trajectories into pixel-level signals, enabling highly precise and generalizable control over panoramic video generation. Regarding reward, we move beyond learning reward functions with external image-based models: instead, we leverage the generated 3D occupancy to directly define rule-based dense rewards for driving compliance and safety. Extensive experiments demonstrate that OmniNWM achieves state-of-the-art performance in video generation, control accuracy, and long-horizon stability, while providing a reliable closed-loop evaluation framework through occupancy-grounded rewards. Project page is available at https://github.com/Arlo0o/OmniNWM.
STT: Stateful Tracking with Transformers for Autonomous Driving
Tracking objects in three-dimensional space is critical for autonomous driving. To ensure safety while driving, the tracker must be able to reliably track objects across frames and accurately estimate their states such as velocity and acceleration in the present. Existing works frequently focus on the association task while either neglecting the model performance on state estimation or deploying complex heuristics to predict the states. In this paper, we propose STT, a Stateful Tracking model built with Transformers, that can consistently track objects in the scenes while also predicting their states accurately. STT consumes rich appearance, geometry, and motion signals through long term history of detections and is jointly optimized for both data association and state estimation tasks. Since the standard tracking metrics like MOTA and MOTP do not capture the combined performance of the two tasks in the wider spectrum of object states, we extend them with new metrics called S-MOTA and MOTPS that address this limitation. STT achieves competitive real-time performance on the Waymo Open Dataset.
DriveAdapter: Breaking the Coupling Barrier of Perception and Planning in End-to-End Autonomous Driving
End-to-end autonomous driving aims to build a fully differentiable system that takes raw sensor data as inputs and directly outputs the planned trajectory or control signals of the ego vehicle. State-of-the-art methods usually follow the `Teacher-Student' paradigm. The Teacher model uses privileged information (ground-truth states of surrounding agents and map elements) to learn the driving strategy. The student model only has access to raw sensor data and conducts behavior cloning on the data collected by the teacher model. By eliminating the noise of the perception part during planning learning, state-of-the-art works could achieve better performance with significantly less data compared to those coupled ones. However, under the current Teacher-Student paradigm, the student model still needs to learn a planning head from scratch, which could be challenging due to the redundant and noisy nature of raw sensor inputs and the casual confusion issue of behavior cloning. In this work, we aim to explore the possibility of directly adopting the strong teacher model to conduct planning while letting the student model focus more on the perception part. We find that even equipped with a SOTA perception model, directly letting the student model learn the required inputs of the teacher model leads to poor driving performance, which comes from the large distribution gap between predicted privileged inputs and the ground-truth. To this end, we propose DriveAdapter, which employs adapters with the feature alignment objective function between the student (perception) and teacher (planning) modules. Additionally, since the pure learning-based teacher model itself is imperfect and occasionally breaks safety rules, we propose a method of action-guided feature learning with a mask for those imperfect teacher features to further inject the priors of hand-crafted rules into the learning process.
U-ViLAR: Uncertainty-Aware Visual Localization for Autonomous Driving via Differentiable Association and Registration
Accurate localization using visual information is a critical yet challenging task, especially in urban environments where nearby buildings and construction sites significantly degrade GNSS (Global Navigation Satellite System) signal quality. This issue underscores the importance of visual localization techniques in scenarios where GNSS signals are unreliable. This paper proposes U-ViLAR, a novel uncertainty-aware visual localization framework designed to address these challenges while enabling adaptive localization using high-definition (HD) maps or navigation maps. Specifically, our method first extracts features from the input visual data and maps them into Bird's-Eye-View (BEV) space to enhance spatial consistency with the map input. Subsequently, we introduce: a) Perceptual Uncertainty-guided Association, which mitigates errors caused by perception uncertainty, and b) Localization Uncertainty-guided Registration, which reduces errors introduced by localization uncertainty. By effectively balancing the coarse-grained large-scale localization capability of association with the fine-grained precise localization capability of registration, our approach achieves robust and accurate localization. Experimental results demonstrate that our method achieves state-of-the-art performance across multiple localization tasks. Furthermore, our model has undergone rigorous testing on large-scale autonomous driving fleets and has demonstrated stable performance in various challenging urban scenarios.
SURDS: Benchmarking Spatial Understanding and Reasoning in Driving Scenarios with Vision Language Models
Accurate spatial reasoning in outdoor environments - covering geometry, object pose, and inter-object relationships - is fundamental to downstream tasks such as mapping, motion forecasting, and high-level planning in autonomous driving. We introduce SURDS, a large-scale benchmark designed to systematically evaluate the spatial reasoning capabilities of vision language models (VLMs). Built on the nuScenes dataset, SURDS comprises 41,080 vision-question-answer training instances and 9,250 evaluation samples, spanning six spatial categories: orientation, depth estimation, pixel-level localization, pairwise distance, lateral ordering, and front-behind relations. We benchmark leading general-purpose VLMs, including GPT, Gemini, and Qwen, revealing persistent limitations in fine-grained spatial understanding. To address these deficiencies, we go beyond static evaluation and explore whether alignment techniques can improve spatial reasoning performance. Specifically, we propose a reinforcement learning-based alignment scheme leveraging spatially grounded reward signals - capturing both perception-level accuracy (location) and reasoning consistency (logic). We further incorporate final-answer correctness and output-format rewards to guide fine-grained policy adaptation. Our GRPO-aligned variant achieves an overall score of 40.80 in the SURDS benchmark. Notably, it outperforms proprietary systems such as GPT-4o (13.30) and Gemini-2.0-flash (35.71). To our best knowledge, this is the first study to demonstrate that reinforcement learning-based alignment can significantly and consistently enhance the spatial reasoning capabilities of VLMs in real-world driving contexts. We release the SURDS benchmark, evaluation toolkit, and GRPO alignment code through: https://github.com/XiandaGuo/Drive-MLLM.
Co-driver: VLM-based Autonomous Driving Assistant with Human-like Behavior and Understanding for Complex Road Scenes
Recent research about Large Language Model based autonomous driving solutions shows a promising picture in planning and control fields. However, heavy computational resources and hallucinations of Large Language Models continue to hinder the tasks of predicting precise trajectories and instructing control signals. To address this problem, we propose Co-driver, a novel autonomous driving assistant system to empower autonomous vehicles with adjustable driving behaviors based on the understanding of road scenes. A pipeline involving the CARLA simulator and Robot Operating System 2 (ROS2) verifying the effectiveness of our system is presented, utilizing a single Nvidia 4090 24G GPU while exploiting the capacity of textual output of the Visual Language Model. Besides, we also contribute a dataset containing an image set and a corresponding prompt set for fine-tuning the Visual Language Model module of our system. In the real-world driving dataset, our system achieved 96.16% success rate in night scenes and 89.7% in gloomy scenes regarding reasonable predictions. Our Co-driver dataset will be released at https://github.com/ZionGo6/Co-driver.
WAM-Diff: A Masked Diffusion VLA Framework with MoE and Online Reinforcement Learning for Autonomous Driving
End-to-end autonomous driving systems based on vision-language-action (VLA) models integrate multimodal sensor inputs and language instructions to generate planning and control signals. While autoregressive large language models and continuous diffusion policies are prevalent, the potential of discrete masked diffusion for trajectory generation remains largely unexplored. This paper presents WAM-Diff, a VLA framework that employs masked diffusion to iteratively refine a discrete sequence representing future ego-trajectories. Our approach features three key innovations: a systematic adaptation of masked diffusion for autonomous driving that supports flexible, non-causal decoding orders; scalable model capacity via a sparse MoE architecture trained jointly on motion prediction and driving-oriented visual question answering (VQA); and online reinforcement learning using Group Sequence Policy Optimization (GSPO) to optimize sequence-level driving rewards. Remarkably, our model achieves 91.0 PDMS on NAVSIM-v1 and 89.7 EPDMS on NAVSIM-v2, demonstrating the effectiveness of masked diffusion for autonomous driving. The approach provides a promising alternative to autoregressive and diffusion-based policies, supporting scenario-aware decoding strategies for trajectory generation. The code for this paper will be released publicly at: https://github.com/fudan-generative-vision/WAM-Diff
Dolphins: Multimodal Language Model for Driving
The quest for fully autonomous vehicles (AVs) capable of navigating complex real-world scenarios with human-like understanding and responsiveness. In this paper, we introduce Dolphins, a novel vision-language model architected to imbibe human-like abilities as a conversational driving assistant. Dolphins is adept at processing multimodal inputs comprising video (or image) data, text instructions, and historical control signals to generate informed outputs corresponding to the provided instructions. Building upon the open-sourced pretrained Vision-Language Model, OpenFlamingo, we first enhance Dolphins's reasoning capabilities through an innovative Grounded Chain of Thought (GCoT) process. Then we tailored Dolphins to the driving domain by constructing driving-specific instruction data and conducting instruction tuning. Through the utilization of the BDD-X dataset, we designed and consolidated four distinct AV tasks into Dolphins to foster a holistic understanding of intricate driving scenarios. As a result, the distinctive features of Dolphins are characterized into two dimensions: (1) the ability to provide a comprehensive understanding of complex and long-tailed open-world driving scenarios and solve a spectrum of AV tasks, and (2) the emergence of human-like capabilities including gradient-free instant adaptation via in-context learning and error recovery via reflection.
VLM-RL: A Unified Vision Language Models and Reinforcement Learning Framework for Safe Autonomous Driving
In recent years, reinforcement learning (RL)-based methods for learning driving policies have gained increasing attention in the autonomous driving community and have achieved remarkable progress in various driving scenarios. However, traditional RL approaches rely on manually engineered rewards, which require extensive human effort and often lack generalizability. To address these limitations, we propose VLM-RL, a unified framework that integrates pre-trained Vision-Language Models (VLMs) with RL to generate reward signals using image observation and natural language goals. The core of VLM-RL is the contrasting language goal (CLG)-as-reward paradigm, which uses positive and negative language goals to generate semantic rewards. We further introduce a hierarchical reward synthesis approach that combines CLG-based semantic rewards with vehicle state information, improving reward stability and offering a more comprehensive reward signal. Additionally, a batch-processing technique is employed to optimize computational efficiency during training. Extensive experiments in the CARLA simulator demonstrate that VLM-RL outperforms state-of-the-art baselines, achieving a 10.5\% reduction in collision rate, a 104.6\% increase in route completion rate, and robust generalization to unseen driving scenarios. Furthermore, VLM-RL can seamlessly integrate almost any standard RL algorithms, potentially revolutionizing the existing RL paradigm that relies on manual reward engineering and enabling continuous performance improvements. The demo video and code can be accessed at: https://zilin-huang.github.io/VLM-RL-website.
SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models
Traditional autonomous driving systems often struggle to connect high-level reasoning with low-level control, leading to suboptimal and sometimes unsafe behaviors. Recent advances in multimodal large language models (MLLMs), which process both visual and textual data, offer an opportunity to unify perception and reasoning. However, effectively embedding precise safety knowledge into MLLMs for autonomous driving remains a significant challenge. To address this, we propose SafeAuto, a framework that enhances MLLM-based autonomous driving by incorporating both unstructured and structured knowledge. First, we introduce a Position-Dependent Cross-Entropy (PDCE) loss to improve low-level control signal predictions when values are represented as text. Second, to explicitly integrate safety knowledge, we develop a reasoning component that translates traffic rules into first-order logic (e.g., "red light implies stop") and embeds them into a probabilistic graphical model (e.g., Markov Logic Network) to verify predicted actions using recognized environmental attributes. Additionally, our Multimodal Retrieval-Augmented Generation (RAG) model leverages video, control signals, and environmental attributes to learn from past driving experiences. Integrating PDCE, MLN, and Multimodal RAG, SafeAuto outperforms existing baselines across multiple datasets, enabling more accurate, reliable, and safer autonomous driving. The code is available at https://github.com/AI-secure/SafeAuto.
DriveMM: All-in-One Large Multimodal Model for Autonomous Driving
Large Multimodal Models (LMMs) have demonstrated exceptional comprehension and interpretation capabilities in Autonomous Driving (AD) by incorporating large language models. Despite the advancements, current data-driven AD approaches tend to concentrate on a single dataset and specific tasks, neglecting their overall capabilities and ability to generalize. To bridge these gaps, we propose DriveMM, a general large multimodal model designed to process diverse data inputs, such as images and multi-view videos, while performing a broad spectrum of AD tasks, including perception, prediction, and planning. Initially, the model undergoes curriculum pre-training to process varied visual signals and perform basic visual comprehension and perception tasks. Subsequently, we augment and standardize various AD-related datasets to fine-tune the model, resulting in an all-in-one LMM for autonomous driving. To assess the general capabilities and generalization ability, we conduct evaluations on six public benchmarks and undertake zero-shot transfer on an unseen dataset, where DriveMM achieves state-of-the-art performance across all tasks. We hope DriveMM as a promising solution for future end-toend autonomous driving applications in the real world.
Exact Gradients for Stochastic Spiking Neural Networks Driven by Rough Signals
We introduce a mathematically rigorous framework based on rough path theory to model stochastic spiking neural networks (SSNNs) as stochastic differential equations with event discontinuities (Event SDEs) and driven by c\`adl\`ag rough paths. Our formalism is general enough to allow for potential jumps to be present both in the solution trajectories as well as in the driving noise. We then identify a set of sufficient conditions ensuring the existence of pathwise gradients of solution trajectories and event times with respect to the network's parameters and show how these gradients satisfy a recursive relation. Furthermore, we introduce a general-purpose loss function defined by means of a new class of signature kernels indexed on c\`adl\`ag rough paths and use it to train SSNNs as generative models. We provide an end-to-end autodifferentiable solver for Event SDEs and make its implementation available as part of the diffrax library. Our framework is, to our knowledge, the first enabling gradient-based training of SSNNs with noise affecting both the spike timing and the network's dynamics.
Emergent Road Rules In Multi-Agent Driving Environments
For autonomous vehicles to safely share the road with human drivers, autonomous vehicles must abide by specific "road rules" that human drivers have agreed to follow. "Road rules" include rules that drivers are required to follow by law -- such as the requirement that vehicles stop at red lights -- as well as more subtle social rules -- such as the implicit designation of fast lanes on the highway. In this paper, we provide empirical evidence that suggests that -- instead of hard-coding road rules into self-driving algorithms -- a scalable alternative may be to design multi-agent environments in which road rules emerge as optimal solutions to the problem of maximizing traffic flow. We analyze what ingredients in driving environments cause the emergence of these road rules and find that two crucial factors are noisy perception and agents' spatial density. We provide qualitative and quantitative evidence of the emergence of seven social driving behaviors, ranging from obeying traffic signals to following lanes, all of which emerge from training agents to drive quickly to destinations without colliding. Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.
DriveRX: A Vision-Language Reasoning Model for Cross-Task Autonomous Driving
Autonomous driving requires real-time, robust reasoning across perception, prediction, planning, and behavior. However, conventional end-to-end models fail to generalize in complex scenarios due to the lack of structured reasoning. Recent vision-language models (VLMs) have been applied to driving tasks, but they typically rely on isolated modules and static supervision, limiting their ability to support multi-stage decision-making. We present AutoDriveRL, a unified training framework that formulates autonomous driving as a structured reasoning process over four core tasks. Each task is independently modeled as a vision-language question-answering problem and optimized using task-specific reward models, enabling fine-grained reinforcement signals at different reasoning stages. Within this framework, we train DriveRX, a cross-task reasoning VLM designed for real-time decision-making. DriveRX achieves strong performance on a public benchmark, outperforming GPT-4o in behavior reasoning and demonstrating robustness under complex or corrupted driving conditions. Our analysis further highlights the impact of vision encoder design and reward-guided reasoning compression. We will release the AutoDriveRL framework and the DriveRX model to support future research.
OmniDrive: A Holistic Vision-Language Dataset for Autonomous Driving with Counterfactual Reasoning
The advances in vision-language models (VLMs) have led to a growing interest in autonomous driving to leverage their strong reasoning capabilities. However, extending these capabilities from 2D to full 3D understanding is crucial for real-world applications. To address this challenge, we propose OmniDrive, a holistic vision-language dataset that aligns agent models with 3D driving tasks through counterfactual reasoning. This approach enhances decision-making by evaluating potential scenarios and their outcomes, similar to human drivers considering alternative actions. Our counterfactual-based synthetic data annotation process generates large-scale, high-quality datasets, providing denser supervision signals that bridge planning trajectories and language-based reasoning. Futher, we explore two advanced OmniDrive-Agent frameworks, namely Omni-L and Omni-Q, to assess the importance of vision-language alignment versus 3D perception, revealing critical insights into designing effective LLM-agents. Significant improvements on the DriveLM Q\&A benchmark and nuScenes open-loop planning demonstrate the effectiveness of our dataset and methods.
CuRLA: Curriculum Learning Based Deep Reinforcement Learning for Autonomous Driving
In autonomous driving, traditional Computer Vision (CV) agents often struggle in unfamiliar situations due to biases in the training data. Deep Reinforcement Learning (DRL) agents address this by learning from experience and maximizing rewards, which helps them adapt to dynamic environments. However, ensuring their generalization remains challenging, especially with static training environments. Additionally, DRL models lack transparency, making it difficult to guarantee safety in all scenarios, particularly those not seen during training. To tackle these issues, we propose a method that combines DRL with Curriculum Learning for autonomous driving. Our approach uses a Proximal Policy Optimization (PPO) agent and a Variational Autoencoder (VAE) to learn safe driving in the CARLA simulator. The agent is trained using two-fold curriculum learning, progressively increasing environment difficulty and incorporating a collision penalty in the reward function to promote safety. This method improves the agent's adaptability and reliability in complex environments, and understand the nuances of balancing multiple reward components from different feedback signals in a single scalar reward function. Keywords: Computer Vision, Deep Reinforcement Learning, Variational Autoencoder, Proximal Policy Optimization, Curriculum Learning, Autonomous Driving.
Transcendental Idealism of Planner: Evaluating Perception from Planning Perspective for Autonomous Driving
Evaluating the performance of perception modules in autonomous driving is one of the most critical tasks in developing the complex intelligent system. While module-level unit test metrics adopted from traditional computer vision tasks are feasible to some extent, it remains far less explored to measure the impact of perceptual noise on the driving quality of autonomous vehicles in a consistent and holistic manner. In this work, we propose a principled framework that provides a coherent and systematic understanding of the impact an error in the perception module imposes on an autonomous agent's planning that actually controls the vehicle. Specifically, the planning process is formulated as expected utility maximisation, where all input signals from upstream modules jointly provide a world state description, and the planner strives for the optimal action by maximising the expected utility determined by both world states and actions. We show that, under practical conditions, the objective function can be represented as an inner product between the world state description and the utility function in a Hilbert space. This geometric interpretation enables a novel way to analyse the impact of noise in world state estimation on planning and leads to a universal metric for evaluating perception. The whole framework resembles the idea of transcendental idealism in the classical philosophical literature, which gives the name to our approach.
Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic Sign Perception
All vehicles must follow the rules that govern traffic behavior, regardless of whether the vehicles are human-driven or Connected Autonomous Vehicles (CAVs). Road signs indicate locally active rules, such as speed limits and requirements to yield or stop. Recent research has demonstrated attacks, such as adding stickers or projected colored patches to signs, that cause CAV misinterpretation, resulting in potential safety issues. Humans can see and potentially defend against these attacks. But humans can not detect what they can not observe. We have developed an effective physical-world attack that leverages the sensitivity of filterless image sensors and the properties of Infrared Laser Reflections (ILRs), which are invisible to humans. The attack is designed to affect CAV cameras and perception, undermining traffic sign recognition by inducing misclassification. In this work, we formulate the threat model and requirements for an ILR-based traffic sign perception attack to succeed. We evaluate the effectiveness of the ILR attack with real-world experiments against two major traffic sign recognition architectures on four IR-sensitive cameras. Our black-box optimization methodology allows the attack to achieve up to a 100% attack success rate in indoor, static scenarios and a >80.5% attack success rate in our outdoor, moving vehicle scenarios. We find the latest state-of-the-art certifiable defense is ineffective against ILR attacks as it mis-certifies >33.5% of cases. To address this, we propose a detection strategy based on the physical properties of IR laser reflections which can detect 96% of ILR attacks.
One shot learning based drivers head movement identification using a millimetre wave radar sensor
Concentration of drivers on traffic is a vital safety issue; thus, monitoring a driver being on road becomes an essential requirement. The key purpose of supervision is to detect abnormal behaviours of the driver and promptly send warnings to him her for avoiding incidents related to traffic accidents. In this paper, to meet the requirement, based on radar sensors applications, the authors first use a small sized millimetre wave radar installed at the steering wheel of the vehicle to collect signals from different head movements of the driver. The received signals consist of the reflection patterns that change in response to the head movements of the driver. Then, in order to distinguish these different movements, a classifier based on the measured signal of the radar sensor is designed. However, since the collected data set is not large, in this paper, the authors propose One shot learning to classify four cases of driver's head movements. The experimental results indicate that the proposed method can classify the four types of cases according to the various head movements of the driver with a high accuracy reaching up to 100. In addition, the classification performance of the proposed method is significantly better than that of the convolutional neural network model.
On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving
The pursuit of autonomous driving technology hinges on the sophisticated integration of perception, decision-making, and control systems. Traditional approaches, both data-driven and rule-based, have been hindered by their inability to grasp the nuance of complex driving environments and the intentions of other road users. This has been a significant bottleneck, particularly in the development of common sense reasoning and nuanced scene understanding necessary for safe and reliable autonomous driving. The advent of Visual Language Models (VLM) represents a novel frontier in realizing fully autonomous vehicle driving. This report provides an exhaustive evaluation of the latest state-of-the-art VLM, \modelnamefull, and its application in autonomous driving scenarios. We explore the model's abilities to understand and reason about driving scenes, make decisions, and ultimately act in the capacity of a driver. Our comprehensive tests span from basic scene recognition to complex causal reasoning and real-time decision-making under varying conditions. Our findings reveal that \modelname demonstrates superior performance in scene understanding and causal reasoning compared to existing autonomous systems. It showcases the potential to handle out-of-distribution scenarios, recognize intentions, and make informed decisions in real driving contexts. However, challenges remain, particularly in direction discernment, traffic light recognition, vision grounding, and spatial reasoning tasks. These limitations underscore the need for further research and development. Project is now available on GitHub for interested parties to access and utilize: https://github.com/PJLab-ADG/GPT4V-AD-Exploration
EMOPortraits: Emotion-enhanced Multimodal One-shot Head Avatars
Head avatars animated by visual signals have gained popularity, particularly in cross-driving synthesis where the driver differs from the animated character, a challenging but highly practical approach. The recently presented MegaPortraits model has demonstrated state-of-the-art results in this domain. We conduct a deep examination and evaluation of this model, with a particular focus on its latent space for facial expression descriptors, and uncover several limitations with its ability to express intense face motions. To address these limitations, we propose substantial changes in both training pipeline and model architecture, to introduce our EMOPortraits model, where we: Enhance the model's capability to faithfully support intense, asymmetric face expressions, setting a new state-of-the-art result in the emotion transfer task, surpassing previous methods in both metrics and quality. Incorporate speech-driven mode to our model, achieving top-tier performance in audio-driven facial animation, making it possible to drive source identity through diverse modalities, including visual signal, audio, or a blend of both. We propose a novel multi-view video dataset featuring a wide range of intense and asymmetric facial expressions, filling the gap with absence of such data in existing datasets.
BLIP-FusePPO: A Vision-Language Deep Reinforcement Learning Framework for Lane Keeping in Autonomous Vehicles
In this paper, we propose Bootstrapped Language-Image Pretraining-driven Fused State Representation in Proximal Policy Optimization (BLIP-FusePPO), a novel multimodal reinforcement learning (RL) framework for autonomous lane-keeping (LK), in which semantic embeddings generated by a vision-language model (VLM) are directly fused with geometric states, LiDAR observations, and Proportional-Integral-Derivative-based (PID) control feedback within the agent observation space. The proposed method lets the agent learn driving rules that are aware of their surroundings and easy to understand by combining high-level scene understanding from the VLM with low-level control and spatial signals. Our architecture brings together semantic, geometric, and control-aware representations to make policy learning more robust. A hybrid reward function that includes semantic alignment, LK accuracy, obstacle avoidance, and speed regulation helps learning to be more efficient and generalizable. Our method is different from the approaches that only use semantic models to shape rewards. Instead, it directly embeds semantic features into the state representation. This cuts down on expensive runtime inference and makes sure that semantic guidance is always available. The simulation results show that the proposed model is better at LK stability and adaptability than the best vision-based and multimodal RL baselines in a wide range of difficult driving situations. We make our code publicly available.
Uncovering Factor Level Preferences to Improve Human-Model Alignment
Despite advancements in Large Language Model (LLM) alignment, understanding the reasons behind LLM preferences remains crucial for bridging the gap between desired and actual behavior. LLMs often exhibit biases or tendencies that diverge from human preferences, such as favoring certain writing styles or producing overly verbose outputs. However, current methods for evaluating preference alignment often lack explainability, relying on coarse-grained comparisons. To address this, we introduce PROFILE (PRObing Factors of InfLuence for Explainability), a novel framework that uncovers and quantifies the influence of specific factors driving preferences. PROFILE's factor level analysis explains the 'why' behind human-model alignment and misalignment, offering insights into the direction of model improvement. We apply PROFILE to analyze human and LLM preferences across three tasks: summarization, helpful response generation, and document-based question-answering. Our factor level analysis reveals a substantial discrepancy between human and LLM preferences in generation tasks, whereas LLMs show strong alignment with human preferences in evaluation tasks. We demonstrate how leveraging factor level insights, including addressing misaligned factors or exploiting the generation-evaluation gap, can improve alignment with human preferences. This work underscores the importance of explainable preference analysis and highlights PROFILE's potential to provide valuable training signals, driving further improvements in human-model alignment.
TLD: A Vehicle Tail Light signal Dataset and Benchmark
Understanding other drivers' intentions is crucial for safe driving. The role of taillights in conveying these intentions is underemphasized in current autonomous driving systems. Accurately identifying taillight signals is essential for predicting vehicle behavior and preventing collisions. Open-source taillight datasets are scarce, often small and inconsistently annotated. To address this gap, we introduce a new large-scale taillight dataset called TLD. Sourced globally, our dataset covers diverse traffic scenarios. To our knowledge, TLD is the first dataset to separately annotate brake lights and turn signals in real driving scenarios. We collected 17.78 hours of driving videos from the internet. This dataset consists of 152k labeled image frames sampled at a rate of 2 Hz, along with 1.5 million unlabeled frames interspersed throughout. Additionally, we have developed a two-stage vehicle light detection model consisting of two primary modules: a vehicle detector and a taillight classifier. Initially, YOLOv10 and DeepSORT captured consecutive vehicle images over time. Subsequently, the two classifiers work simultaneously to determine the states of the brake lights and turn signals. A post-processing procedure is then used to eliminate noise caused by misidentifications and provide the taillight states of the vehicle within a given time frame. Our method shows exceptional performance on our dataset, establishing a benchmark for vehicle taillight detection. The dataset is available at https://huggingface.co/datasets/ChaiJohn/TLD/tree/main
Deep Reinforcement Learning for the Joint Control of Traffic Light Signaling and Vehicle Speed Advice
Traffic congestion in dense urban centers presents an economical and environmental burden. In recent years, the availability of vehicle-to-anything communication allows for the transmission of detailed vehicle states to the infrastructure that can be used for intelligent traffic light control. The other way around, the infrastructure can provide vehicles with advice on driving behavior, such as appropriate velocities, which can improve the efficacy of the traffic system. Several research works applied deep reinforcement learning to either traffic light control or vehicle speed advice. In this work, we propose a first attempt to jointly learn the control of both. We show this to improve the efficacy of traffic systems. In our experiments, the joint control approach reduces average vehicle trip delays, w.r.t. controlling only traffic lights, in eight out of eleven benchmark scenarios. Analyzing the qualitative behavior of the vehicle speed advice policy, we observe that this is achieved by smoothing out the velocity profile of vehicles nearby a traffic light. Learning joint control of traffic signaling and speed advice in the real world could help to reduce congestion and mitigate the economical and environmental repercussions of today's traffic systems.
Knowledge-Informed Multi-Agent Trajectory Prediction at Signalized Intersections for Infrastructure-to-Everything
Multi-agent trajectory prediction at signalized intersections is crucial for developing efficient intelligent transportation systems and safe autonomous driving systems. Due to the complexity of intersection scenarios and the limitations of single-vehicle perception, the performance of vehicle-centric prediction methods has reached a plateau. In this paper, we introduce an Infrastructure-to-Everything (I2X) collaborative prediction scheme. In this scheme, roadside units (RSUs) independently forecast the future trajectories of all vehicles and transmit these predictions unidirectionally to subscribing vehicles. Building on this scheme, we propose I2XTraj, a dedicated infrastructure-based trajectory prediction model. I2XTraj leverages real-time traffic signal states, prior maneuver strategy knowledge, and multi-agent interactions to generate accurate, joint multi-modal trajectory prediction. First, a continuous signal-informed mechanism is proposed to adaptively process real-time traffic signals to guide trajectory proposal generation under varied intersection configurations. Second, a driving strategy awareness mechanism estimates the joint distribution of maneuver strategies by integrating spatial priors of intersection areas with dynamic vehicle states, enabling coverage of the full set of feasible maneuvers. Third, a spatial-temporal-mode attention network models multi-agent interactions to refine and adjust joint trajectory outputs.Finally, I2XTraj is evaluated on two real-world datasets of signalized intersections, the V2X-Seq and the SinD drone dataset. In both single-infrastructure and online collaborative scenarios, our model outperforms state-of-the-art methods by over 30\% on V2X-Seq and 15\% on SinD, demonstrating strong generalizability and robustness.
Interaction Dataset of Autonomous Vehicles with Traffic Lights and Signs
This paper presents the development of a comprehensive dataset capturing interactions between Autonomous Vehicles (AVs) and traffic control devices, specifically traffic lights and stop signs. Derived from the Waymo Motion dataset, our work addresses a critical gap in the existing literature by providing real-world trajectory data on how AVs navigate these traffic control devices. We propose a methodology for identifying and extracting relevant interaction trajectory data from the Waymo Motion dataset, incorporating over 37,000 instances with traffic lights and 44,000 with stop signs. Our methodology includes defining rules to identify various interaction types, extracting trajectory data, and applying a wavelet-based denoising method to smooth the acceleration and speed profiles and eliminate anomalous values, thereby enhancing the trajectory quality. Quality assessment metrics indicate that trajectories obtained in this study have anomaly proportions in acceleration and jerk profiles reduced to near-zero levels across all interaction categories. By making this dataset publicly available, we aim to address the current gap in datasets containing AV interaction behaviors with traffic lights and signs. Based on the organized and published dataset, we can gain a more in-depth understanding of AVs' behavior when interacting with traffic lights and signs. This will facilitate research on AV integration into existing transportation infrastructures and networks, supporting the development of more accurate behavioral models and simulation tools.
Improving traffic sign recognition by active search
We describe an iterative active-learning algorithm to recognise rare traffic signs. A standard ResNet is trained on a training set containing only a single sample of the rare class. We demonstrate that by sorting the samples of a large, unlabeled set by the estimated probability of belonging to the rare class, we can efficiently identify samples from the rare class. This works despite the fact that this estimated probability is usually quite low. A reliable active-learning loop is obtained by labeling these candidate samples, including them in the training set, and iterating the procedure. Further, we show that we get similar results starting from a single synthetic sample. Our results are important as they indicate a straightforward way of improving traffic-sign recognition for automated driving systems. In addition, they show that we can make use of the information hidden in low confidence outputs, which is usually ignored.
Towards Safer and Understandable Driver Intention Prediction
Autonomous driving (AD) systems are becoming increasingly capable of handling complex tasks, mainly due to recent advances in deep learning and AI. As interactions between autonomous systems and humans increase, the interpretability of decision-making processes in driving systems becomes increasingly crucial for ensuring safe driving operations. Successful human-machine interaction requires understanding the underlying representations of the environment and the driving task, which remains a significant challenge in deep learning-based systems. To address this, we introduce the task of interpretability in maneuver prediction before they occur for driver safety, i.e., driver intent prediction (DIP), which plays a critical role in AD systems. To foster research in interpretable DIP, we curate the eXplainable Driving Action Anticipation Dataset (DAAD-X), a new multimodal, ego-centric video dataset to provide hierarchical, high-level textual explanations as causal reasoning for the driver's decisions. These explanations are derived from both the driver's eye-gaze and the ego-vehicle's perspective. Next, we propose Video Concept Bottleneck Model (VCBM), a framework that generates spatio-temporally coherent explanations inherently, without relying on post-hoc techniques. Finally, through extensive evaluations of the proposed VCBM on the DAAD-X dataset, we demonstrate that transformer-based models exhibit greater interpretability than conventional CNN-based models. Additionally, we introduce a multilabel t-SNE visualization technique to illustrate the disentanglement and causal correlation among multiple explanations. Our data, code and models are available at: https://mukil07.github.io/VCBM.github.io/
DriveQA: Passing the Driving Knowledge Test
If a Large Language Model (LLM) were to take a driving knowledge test today, would it pass? Beyond standard spatial and visual question-answering (QA) tasks on current autonomous driving benchmarks, driving knowledge tests require a complete understanding of all traffic rules, signage, and right-of-way principles. To pass this test, human drivers must discern various edge cases that rarely appear in real-world datasets. In this work, we present DriveQA, an extensive open-source text and vision-based benchmark that exhaustively covers traffic regulations and scenarios. Through our experiments using DriveQA, we show that (1) state-of-the-art LLMs and Multimodal LLMs (MLLMs) perform well on basic traffic rules but exhibit significant weaknesses in numerical reasoning and complex right-of-way scenarios, traffic sign variations, and spatial layouts, (2) fine-tuning on DriveQA improves accuracy across multiple categories, particularly in regulatory sign recognition and intersection decision-making, (3) controlled variations in DriveQA-V provide insights into model sensitivity to environmental factors such as lighting, perspective, distance, and weather conditions, and (4) pretraining on DriveQA enhances downstream driving task performance, leading to improved results on real-world datasets such as nuScenes and BDD, while also demonstrating that models can internalize text and synthetic traffic knowledge to generalize effectively across downstream QA tasks.
Controllable Diverse Sampling for Diffusion Based Motion Behavior Forecasting
In autonomous driving tasks, trajectory prediction in complex traffic environments requires adherence to real-world context conditions and behavior multimodalities. Existing methods predominantly rely on prior assumptions or generative models trained on curated data to learn road agents' stochastic behavior bounded by scene constraints. However, they often face mode averaging issues due to data imbalance and simplistic priors, and could even suffer from mode collapse due to unstable training and single ground truth supervision. These issues lead the existing methods to a loss of predictive diversity and adherence to the scene constraints. To address these challenges, we introduce a novel trajectory generator named Controllable Diffusion Trajectory (CDT), which integrates map information and social interactions into a Transformer-based conditional denoising diffusion model to guide the prediction of future trajectories. To ensure multimodality, we incorporate behavioral tokens to direct the trajectory's modes, such as going straight, turning right or left. Moreover, we incorporate the predicted endpoints as an alternative behavioral token into the CDT model to facilitate the prediction of accurate trajectories. Extensive experiments on the Argoverse 2 benchmark demonstrate that CDT excels in generating diverse and scene-compliant trajectories in complex urban settings.
LLMLight: Large Language Models as Traffic Signal Control Agents
Traffic Signal Control (TSC) is a crucial component in urban traffic management, aiming to optimize road network efficiency and reduce congestion. Traditional methods in TSC, primarily based on transportation engineering and reinforcement learning (RL), often exhibit limitations in generalization across varied traffic scenarios and lack interpretability. This paper presents LLMLight, a novel framework employing Large Language Models (LLMs) as decision-making agents for TSC. Specifically, the framework begins by instructing the LLM with a knowledgeable prompt detailing real-time traffic conditions. Leveraging the advanced generalization capabilities of LLMs, LLMLight engages a reasoning and decision-making process akin to human intuition for effective traffic control. Moreover, we build LightGPT, a specialized backbone LLM tailored for TSC tasks. By learning nuanced traffic patterns and control strategies, LightGPT enhances the LLMLight framework cost-effectively. Extensive experiments on nine real-world and synthetic datasets showcase the remarkable effectiveness, generalization ability, and interpretability of LLMLight against nine transportation-based and RL-based baselines.
Controlling extreme events in neuronal networks: A single driving signal approach
We show that in a drive-response coupling framework extreme events are suppressed in the response system by the dominance of a single driving signal. We validate this approach across three distinct response network topologies, namely (i) a pair of coupled neurons, (ii) a monolayer network of N coupled neurons and (iii) a two-layer multiplex network each composed of FitzHugh-Nagumo neuronal units. The response networks inherently exhibit extreme events. Our results demonstrate that influencing just one neuron in the response network with an appropriately tuned driving signal is sufficient to control extreme events across all three configurations. In the two-neuron case, suppression of extreme events occurs due to the breaking of phase-locking between the driving neuron and the targeted response neuron. In the case of monolayer and multiplex networks, suppression of extreme events results from the disruption of protoevent frequency dynamics and a subsequent frequency decoupling of the driven neuron from the rest of the network. We also observe that when the size of the neurons in response network connected to the drive increases, the onset of control occurs earlier indicating a scaling advantage of the method.
An Edge Assisted Robust Smart Traffic Management and Signalling System for Guiding Emergency Vehicles During Peak Hours
Congestion in traffic is an unavoidable circumstance in many cities in India and other countries. It is an issue of major concern. The steep rise in the number of automobiles on the roads followed by old infrastructure, accidents, pedestrian traffic, and traffic rule violations all add to challenging traffic conditions. Given these poor conditions of traffic, there is a critical need for automatically detecting and signaling systems. There are already various technologies that are used for traffic management and signaling systems like video analysis, infrared sensors, and wireless sensors. The main issue with these methods is they are very costly and high maintenance is required. In this paper, we have proposed a three-phase system that can guide emergency vehicles and manage traffic based on the degree of congestion. In the first phase, the system processes the captured images and calculates the Index value which is used to discover the degree of congestion. The Index value of a particular road depends on its width and the length up to which the camera captures images of that road. We have to take input for the parameters (length and width) while setting up the system. In the second phase, the system checks whether there are any emergency vehicles present or not in any lane. In the third phase, the whole processing and decision-making part is performed at the edge server. The proposed model is robust and it takes into consideration adverse weather conditions such as hazy, foggy, and windy. It works very efficiently in low light conditions also. The edge server is a strategically placed server that provides us with low latency and better connectivity. Using Edge technology in this traffic management system reduces the strain on cloud servers and the system becomes more reliable in real-time because the latency and bandwidth get reduced due to processing at the intermediate edge server.
Large Language Models for Autonomous Driving: Real-World Experiments
Autonomous driving systems are increasingly popular in today's technological landscape, where vehicles with partial automation have already been widely available on the market, and the full automation era with "driverless" capabilities is near the horizon. However, accurately understanding humans' commands, particularly for autonomous vehicles that have only passengers instead of drivers, and achieving a high level of personalization remain challenging tasks in the development of autonomous driving systems. In this paper, we introduce a Large Language Model (LLM)-based framework Talk-to-Drive (Talk2Drive) to process verbal commands from humans and make autonomous driving decisions with contextual information, satisfying their personalized preferences for safety, efficiency, and comfort. First, a speech recognition module is developed for Talk2Drive to interpret verbal inputs from humans to textual instructions, which are then sent to LLMs for reasoning. Then, appropriate commands for the Electrical Control Unit (ECU) are generated, achieving a 100% success rate in executing codes. Real-world experiments show that our framework can substantially reduce the takeover rate for a diverse range of drivers by up to 90.1%. To the best of our knowledge, Talk2Drive marks the first instance of employing an LLM-based system in a real-world autonomous driving environment.
Evaluation of Large Language Models for Decision Making in Autonomous Driving
Various methods have been proposed for utilizing Large Language Models (LLMs) in autonomous driving. One strategy of using LLMs for autonomous driving involves inputting surrounding objects as text prompts to the LLMs, along with their coordinate and velocity information, and then outputting the subsequent movements of the vehicle. When using LLMs for such purposes, capabilities such as spatial recognition and planning are essential. In particular, two foundational capabilities are required: (1) spatial-aware decision making, which is the ability to recognize space from coordinate information and make decisions to avoid collisions, and (2) the ability to adhere to traffic rules. However, quantitative research has not been conducted on how accurately different types of LLMs can handle these problems. In this study, we quantitatively evaluated these two abilities of LLMs in the context of autonomous driving. Furthermore, to conduct a Proof of Concept (POC) for the feasibility of implementing these abilities in actual vehicles, we developed a system that uses LLMs to drive a vehicle.
Early Warning Signals and the Prosecutor's Fallacy
Early warning signals have been proposed to forecast the possibility of a critical transition, such as the eutrophication of a lake, the collapse of a coral reef, or the end of a glacial period. Because such transitions often unfold on temporal and spatial scales that can be difficult to approach by experimental manipulation, research has often relied on historical observations as a source of natural experiments. Here we examine a critical difference between selecting systems for study based on the fact that we have observed a critical transition and those systems for which we wish to forecast the approach of a transition. This difference arises by conditionally selecting systems known to experience a transition of some sort and failing to account for the bias this introduces -- a statistical error often known as the Prosecutor's Fallacy. By analysing simulated systems that have experienced transitions purely by chance, we reveal an elevated rate of false positives in common warning signal statistics. We further demonstrate a model-based approach that is less subject to this bias than these more commonly used summary statistics. We note that experimental studies with replicates avoid this pitfall entirely.
Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction
Understanding drivers' decision-making is crucial for road safety. Although predicting the ego-vehicle's path is valuable for driver-assistance systems, existing methods mainly focus on external factors like other vehicles' motions, often neglecting the driver's attention and intent. To address this gap, we infer the ego-trajectory by integrating the driver's gaze and the surrounding scene. We introduce RouteFormer, a novel multimodal ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view, comprising first-person video and gaze fixations. We also present the Path Complexity Index (PCI), a new metric for trajectory complexity that enables a more nuanced evaluation of challenging scenarios. To tackle data scarcity and enhance diversity, we introduce GEM, a comprehensive dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data. Extensive evaluations on GEM and DR(eye)VE demonstrate that RouteFormer significantly outperforms state-of-the-art methods, achieving notable improvements in prediction accuracy across diverse conditions. Ablation studies reveal that incorporating driver field-of-view data yields significantly better average displacement error, especially in challenging scenarios with high PCI scores, underscoring the importance of modeling driver attention. All data and code are available at https://meakbiyik.github.io/routeformer.
Quantification of Actual Road User Behavior on the Basis of Given Traffic Rules
Driving on roads is restricted by various traffic rules, aiming to ensure safety for all traffic participants. However, human road users usually do not adhere to these rules strictly, resulting in varying degrees of rule conformity. Such deviations from given rules are key components of today's road traffic. In autonomous driving, robotic agents can disturb traffic flow, when rule deviations are not taken into account. In this paper, we present an approach to derive the distribution of degrees of rule conformity from human driving data. We demonstrate our method with the Waymo Open Motion dataset and Safety Distance and Speed Limit rules.
What Matters to Enhance Traffic Rule Compliance of Imitation Learning for End-to-End Autonomous Driving
End-to-end autonomous driving, where the entire driving pipeline is replaced with a single neural network, has recently gained research attention because of its simpler structure and faster inference time. Despite this appealing approach largely reducing the complexity in the driving pipeline, it also leads to safety issues because the trained policy is not always compliant with the traffic rules. In this paper, we proposed P-CSG, a penalty-based imitation learning approach with contrastive-based cross semantics generation sensor fusion technologies to increase the overall performance of end-to-end autonomous driving. In this method, we introduce three penalties - red light, stop sign, and curvature speed penalty to make the agent more sensitive to traffic rules. The proposed cross semantics generation helps to align the shared information of different input modalities. We assessed our model's performance using the CARLA Leaderboard - Town 05 Long Benchmark and Longest6 Benchmark, achieving 8.5% and 2.0% driving score improvement compared to the baselines. Furthermore, we conducted robustness evaluations against adversarial attacks like FGSM and Dot attacks, revealing a substantial increase in robustness compared to other baseline models. More detailed information can be found at https://hk-zh.github.io/p-csg-plus.
Self-Regulating Cars: Automating Traffic Control in Free Flow Road Networks
Free-flow road networks, such as suburban highways, are increasingly experiencing traffic congestion due to growing commuter inflow and limited infrastructure. Traditional control mechanisms, such as traffic signals or local heuristics, are ineffective or infeasible in these high-speed, signal-free environments. We introduce self-regulating cars, a reinforcement learning-based traffic control protocol that dynamically modulates vehicle speeds to optimize throughput and prevent congestion, without requiring new physical infrastructure. Our approach integrates classical traffic flow theory, gap acceptance models, and microscopic simulation into a physics-informed RL framework. By abstracting roads into super-segments, the agent captures emergent flow dynamics and learns robust speed modulation policies from instantaneous traffic observations. Evaluated in the high-fidelity PTV Vissim simulator on a real-world highway network, our method improves total throughput by 5%, reduces average delay by 13%, and decreases total stops by 3% compared to the no-control setting. It also achieves smoother, congestion-resistant flow while generalizing across varied traffic patterns, demonstrating its potential for scalable, ML-driven traffic management.
DriveDreamer4D: World Models Are Effective Data Machines for 4D Driving Scene Representation
Closed-loop simulation is essential for advancing end-to-end autonomous driving systems. Contemporary sensor simulation methods, such as NeRF and 3DGS, rely predominantly on conditions closely aligned with training data distributions, which are largely confined to forward-driving scenarios. Consequently, these methods face limitations when rendering complex maneuvers (e.g., lane change, acceleration, deceleration). Recent advancements in autonomous-driving world models have demonstrated the potential to generate diverse driving videos. However, these approaches remain constrained to 2D video generation, inherently lacking the spatiotemporal coherence required to capture intricacies of dynamic driving environments. In this paper, we introduce DriveDreamer4D, which enhances 4D driving scene representation leveraging world model priors. Specifically, we utilize the world model as a data machine to synthesize novel trajectory videos based on real-world driving data. Notably, we explicitly leverage structured conditions to control the spatial-temporal consistency of foreground and background elements, thus the generated data adheres closely to traffic constraints. To our knowledge, DriveDreamer4D is the first to utilize video generation models for improving 4D reconstruction in driving scenarios. Experimental results reveal that DriveDreamer4D significantly enhances generation quality under novel trajectory views, achieving a relative improvement in FID by 24.5%, 39.0%, and 10.5% compared to PVG, S3Gaussian, and Deformable-GS. Moreover, DriveDreamer4D markedly enhances the spatiotemporal coherence of driving agents, which is verified by a comprehensive user study and the relative increases of 20.3%, 42.0%, and 13.7% in the NTA-IoU metric.
On Offline Evaluation of 3D Object Detection for Autonomous Driving
Prior work in 3D object detection evaluates models using offline metrics like average precision since closed-loop online evaluation on the downstream driving task is costly. However, it is unclear how indicative offline results are of driving performance. In this work, we perform the first empirical evaluation measuring how predictive different detection metrics are of driving performance when detectors are integrated into a full self-driving stack. We conduct extensive experiments on urban driving in the CARLA simulator using 16 object detection models. We find that the nuScenes Detection Score has a higher correlation to driving performance than the widely used average precision metric. In addition, our results call for caution on the exclusive reliance on the emerging class of `planner-centric' metrics.
LLM4Drive: A Survey of Large Language Models for Autonomous Driving
Autonomous driving technology, a catalyst for revolutionizing transportation and urban mobility, has the tend to transition from rule-based systems to data-driven strategies. Traditional module-based systems are constrained by cumulative errors among cascaded modules and inflexible pre-set rules. In contrast, end-to-end autonomous driving systems have the potential to avoid error accumulation due to their fully data-driven training process, although they often lack transparency due to their "black box" nature, complicating the validation and traceability of decisions. Recently, large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers. A natural thought is to utilize these abilities to empower autonomous driving. By combining LLM with foundation vision models, it could open the door to open-world understanding, reasoning, and few-shot learning, which current autonomous driving systems are lacking. In this paper, we systematically review a research line about Large Language Models for Autonomous Driving (LLM4AD). This study evaluates the current state of technological advancements, distinctly outlining the principal challenges and prospective directions for the field. For the convenience of researchers in academia and industry, we provide real-time updates on the latest advances in the field as well as relevant open-source resources via the designated link: https://github.com/Thinklab-SJTU/Awesome-LLM4AD.
End-to-end Autonomous Driving with Semantic Depth Cloud Mapping and Multi-agent
Focusing on the task of point-to-point navigation for an autonomous driving vehicle, we propose a novel deep learning model trained with end-to-end and multi-task learning manners to perform both perception and control tasks simultaneously. The model is used to drive the ego vehicle safely by following a sequence of routes defined by the global planner. The perception part of the model is used to encode high-dimensional observation data provided by an RGBD camera while performing semantic segmentation, semantic depth cloud (SDC) mapping, and traffic light state and stop sign prediction. Then, the control part decodes the encoded features along with additional information provided by GPS and speedometer to predict waypoints that come with a latent feature space. Furthermore, two agents are employed to process these outputs and make a control policy that determines the level of steering, throttle, and brake as the final action. The model is evaluated on CARLA simulator with various scenarios made of normal-adversarial situations and different weathers to mimic real-world conditions. In addition, we do a comparative study with some recent models to justify the performance in multiple aspects of driving. Moreover, we also conduct an ablation study on SDC mapping and multi-agent to understand their roles and behavior. As a result, our model achieves the highest driving score even with fewer parameters and computation load. To support future studies, we share our codes at https://github.com/oskarnatan/end-to-end-driving.
Hidden Biases of End-to-End Driving Models
End-to-end driving systems have recently made rapid progress, in particular on CARLA. Independent of their major contribution, they introduce changes to minor system components. Consequently, the source of improvements is unclear. We identify two biases that recur in nearly all state-of-the-art methods and are critical for the observed progress on CARLA: (1) lateral recovery via a strong inductive bias towards target point following, and (2) longitudinal averaging of multimodal waypoint predictions for slowing down. We investigate the drawbacks of these biases and identify principled alternatives. By incorporating our insights, we develop TF++, a simple end-to-end method that ranks first on the Longest6 and LAV benchmarks, gaining 14 driving score over the best prior work on Longest6.
Simulating the Unseen: Crash Prediction Must Learn from What Did Not Happen
Traffic safety science has long been hindered by a fundamental data paradox: the crashes we most wish to prevent are precisely those events we rarely observe. Existing crash-frequency models and surrogate safety metrics rely heavily on sparse, noisy, and under-reported records, while even sophisticated, high-fidelity simulations undersample the long-tailed situations that trigger catastrophic outcomes such as fatalities. We argue that the path to achieving Vision Zero, i.e., the complete elimination of traffic fatalities and severe injuries, requires a paradigm shift from traditional crash-only learning to a new form of counterfactual safety learning: reasoning not only about what happened, but also about the vast set of plausible yet perilous scenarios that could have happened under slightly different circumstances. To operationalize this shift, our proposed agenda bridges macro to micro. Guided by crash-rate priors, generative scene engines, diverse driver models, and causal learning, near-miss events are synthesized and explained. A crash-focused digital twin testbed links micro scenes to macro patterns, while a multi-objective validator ensures that simulations maintain statistical realism. This pipeline transforms sparse crash data into rich signals for crash prediction, enabling the stress-testing of vehicles, roads, and policies before deployment. By learning from crashes that almost happened, we can shift traffic safety from reactive forensics to proactive prevention, advancing Vision Zero.
AIDE: A Vision-Driven Multi-View, Multi-Modal, Multi-Tasking Dataset for Assistive Driving Perception
Driver distraction has become a significant cause of severe traffic accidents over the past decade. Despite the growing development of vision-driven driver monitoring systems, the lack of comprehensive perception datasets restricts road safety and traffic security. In this paper, we present an AssIstive Driving pErception dataset (AIDE) that considers context information both inside and outside the vehicle in naturalistic scenarios. AIDE facilitates holistic driver monitoring through three distinctive characteristics, including multi-view settings of driver and scene, multi-modal annotations of face, body, posture, and gesture, and four pragmatic task designs for driving understanding. To thoroughly explore AIDE, we provide experimental benchmarks on three kinds of baseline frameworks via extensive methods. Moreover, two fusion strategies are introduced to give new insights into learning effective multi-stream/modal representations. We also systematically investigate the importance and rationality of the key components in AIDE and benchmarks. The project link is https://github.com/ydk122024/AIDE.
Satellite Connectivity Prediction for Fast-Moving Platforms
Satellite connectivity is gaining increased attention as the demand for seamless internet access, especially in transportation and remote areas, continues to grow. For fast-moving objects such as aircraft, vehicles, or trains, satellite connectivity is critical due to their mobility and frequent presence in areas without terrestrial coverage. Maintaining reliable connectivity in these cases requires frequent switching between satellite beams, constellations, or orbits. To enhance user experience and address challenges like long switching times, Machine Learning (ML) algorithms can analyze historical connectivity data and predict network quality at specific locations. This allows for proactive measures, such as network switching before connectivity issues arise. In this paper, we analyze a real dataset of communication between a Geostationary Orbit (GEO) satellite and aircraft over multiple flights, using ML to predict signal quality. Our prediction model achieved an F1 score of 0.97 on the test data, demonstrating the accuracy of machine learning in predicting signal quality during flight. By enabling seamless broadband service, including roaming between different satellite constellations and providers, our model addresses the need for real-time predictions of signal quality. This approach can further be adapted to automate satellite and beam-switching mechanisms to improve overall communication efficiency. The model can also be retrained and applied to any moving object with satellite connectivity, using customized datasets, including connected vehicles and trains.
Drive Video Analysis for the Detection of Traffic Near-Miss Incidents
Because of their recent introduction, self-driving cars and advanced driver assistance system (ADAS) equipped vehicles have had little opportunity to learn, the dangerous traffic (including near-miss incident) scenarios that provide normal drivers with strong motivation to drive safely. Accordingly, as a means of providing learning depth, this paper presents a novel traffic database that contains information on a large number of traffic near-miss incidents that were obtained by mounting driving recorders in more than 100 taxis over the course of a decade. The study makes the following two main contributions: (i) In order to assist automated systems in detecting near-miss incidents based on database instances, we created a large-scale traffic near-miss incident database (NIDB) that consists of video clip of dangerous events captured by monocular driving recorders. (ii) To illustrate the applicability of NIDB traffic near-miss incidents, we provide two primary database-related improvements: parameter fine-tuning using various near-miss scenes from NIDB, and foreground/background separation into motion representation. Then, using our new database in conjunction with a monocular driving recorder, we developed a near-miss recognition method that provides automated systems with a performance level that is comparable to a human-level understanding of near-miss incidents (64.5% vs. 68.4% at near-miss recognition, 61.3% vs. 78.7% at near-miss detection).
Real-time accident detection and physiological signal monitoring to enhance motorbike safety and emergency response
Rapid urbanization and improved living standards have led to a substantial increase in the number of vehicles on the road, consequently resulting in a rise in the frequency of accidents. Among these accidents, motorbike accidents pose a particularly high risk, often resulting in serious injuries or deaths. A significant number of these fatalities occur due to delayed or inadequate medical attention. To this end, we propose a novel automatic detection and notification system specifically designed for motorbike accidents. The proposed system comprises two key components: a detection system and a physiological signal monitoring system. The detection system is integrated into the helmet and consists of a microcontroller, accelerometer, GPS, GSM, and Wi-Fi modules. The physio-monitoring system incorporates a sensor for monitoring pulse rate and SpO_{2} saturation. All collected data are presented on an LCD display and wirelessly transmitted to the detection system through the microcontroller of the physiological signal monitoring system. If the accelerometer readings consistently deviate from the specified threshold decided through extensive experimentation, the system identifies the event as an accident and transmits the victim's information -- including the GPS location, pulse rate, and SpO_{2} saturation rate -- to the designated emergency contacts. Preliminary results demonstrate the efficacy of the proposed system in accurately detecting motorbike accidents and promptly alerting emergency contacts. We firmly believe that the proposed system has the potential to significantly mitigate the risks associated with motorbike accidents and save lives.
Vision-Language-Action Models for Autonomous Driving: Past, Present, and Future
Autonomous driving has long relied on modular "Perception-Decision-Action" pipelines, where hand-crafted interfaces and rule-based components often break down in complex or long-tailed scenarios. Their cascaded design further propagates perception errors, degrading downstream planning and control. Vision-Action (VA) models address some limitations by learning direct mappings from visual inputs to actions, but they remain opaque, sensitive to distribution shifts, and lack structured reasoning or instruction-following capabilities. Recent progress in Large Language Models (LLMs) and multimodal learning has motivated the emergence of Vision-Language-Action (VLA) frameworks, which integrate perception with language-grounded decision making. By unifying visual understanding, linguistic reasoning, and actionable outputs, VLAs offer a pathway toward more interpretable, generalizable, and human-aligned driving policies. This work provides a structured characterization of the emerging VLA landscape for autonomous driving. We trace the evolution from early VA approaches to modern VLA frameworks and organize existing methods into two principal paradigms: End-to-End VLA, which integrates perception, reasoning, and planning within a single model, and Dual-System VLA, which separates slow deliberation (via VLMs) from fast, safety-critical execution (via planners). Within these paradigms, we further distinguish subclasses such as textual vs. numerical action generators and explicit vs. implicit guidance mechanisms. We also summarize representative datasets and benchmarks for evaluating VLA-based driving systems and highlight key challenges and open directions, including robustness, interpretability, and instruction fidelity. Overall, this work aims to establish a coherent foundation for advancing human-compatible autonomous driving systems.
SAEs Are Good for Steering -- If You Select the Right Features
Sparse Autoencoders (SAEs) have been proposed as an unsupervised approach to learn a decomposition of a model's latent space. This enables useful applications such as steering - influencing the output of a model towards a desired concept - without requiring labeled data. Current methods identify SAE features to steer by analyzing the input tokens that activate them. However, recent work has highlighted that activations alone do not fully describe the effect of a feature on the model's output. In this work, we draw a distinction between two types of features: input features, which mainly capture patterns in the model's input, and output features, which have a human-understandable effect on the model's output. We propose input and output scores to characterize and locate these types of features, and show that high values for both scores rarely co-occur in the same features. These findings have practical implications: after filtering out features with low output scores, we obtain 2-3x improvements when steering with SAEs, making them competitive with supervised methods.
Select2Drive: Pragmatic Communications for Real-Time Collaborative Autonomous Driving
Vehicle-to-Everything communications-assisted Autonomous Driving (V2X-AD) has witnessed remarkable advancements in recent years, with pragmatic communications (PragComm) emerging as a promising paradigm for real-time collaboration among vehicles and other agents.Simultaneously, extensive research has explored the interplay between collaborative perception and decision-making in end-to-end driving frameworks.In this work, we revisit the collaborative driving problem and propose the Select2Drive framework to optimize the utilization of limited computational and communication resources.Particularly, to mitigate cumulative latency in perception and decision-making, Select2Drive introduces Distributed Predictive Perception (DPP) by formulating an active prediction paradigm and simplifies high-dimensional semantic feature prediction into computation cost-efficient, motion-aware reconstruction. Given the "less is more" principle that a broadened perceptual horizon possibly confuses the decision module rather than contributing to it, Select2Drive utilizes Area-of-Importance-based PragComm (APC) to prioritize the communications of critical regions, thus boosting both communication efficiency and decision-making efficacy. Empirical evaluations on the V2Xverse dataset and CARLA driving simulator demonstrate that Select2Drive achieves a 11.31% (resp. 7.69%) improvement in offline perception tasks under limited bandwidth (resp. pose error conditions). Moreover, it delivers at most 14.68% and 31.76% enhancement in closed-loop driving scores and route completion rates, particularly in scenarios characterized by dense traffic and high-speed dynamics.
From Accidents to Insights: Leveraging Multimodal Data for Scenario-Driven ADS Testing
The rapid advancements in Autonomous Driving Systems (ADS) have necessitated robust software testing to ensure safety and reliability. However, automating the generation of scalable and concrete test scenarios remains a significant challenge. Current scenario-based test case generation methods often face limitations, such as unrealistic scenes and inaccurate vehicle trajectories. These challenges largely result from the loss of map information during data extraction and the lack of an effective verification mechanism to mitigate hallucinations in large language models (LLMs). This paper introduces TRACE, a scenario-based ADS Test case Generation framework for Critical Scenarios. By leveraging multimodal data to extract challenging scenarios from real-world car crash reports, TRACE constructs numerous critical test cases with less data, significantly enhancing ADS bug detection efficiency. Using in-context learning, chain-of-thought prompting, and self-validation approaches, we use LLMs to extract environmental and road network information from crash reports. For vehicle trajectory planning, data containing map information and vehicle coordinates serves as a knowledge base to build a ChatGPT-based LLM with path-planning capabilities, which we named TrackMate. Based on 50 existing crash reports, our approach successfully tested three ADS models across two simulation platforms, MetaDrive and BeamNG. Of the 290 constructed test scenarios, 127 are identified as critical, as they resulted in vehicle collisions. Additionally, user feedback reveals that TRACE demonstrates superior scenario reconstruction accuracy, with 77.5% of the scenarios being rated as 'mostly or 'totally' consistent, compared to only 27% for the most related SOTA, LCTGen.
YOLO-TS: Real-Time Traffic Sign Detection with Enhanced Accuracy Using Optimized Receptive Fields and Anchor-Free Fusion
Ensuring safety in both autonomous driving and advanced driver-assistance systems (ADAS) depends critically on the efficient deployment of traffic sign recognition technology. While current methods show effectiveness, they often compromise between speed and accuracy. To address this issue, we present a novel real-time and efficient road sign detection network, YOLO-TS. This network significantly improves performance by optimizing the receptive fields of multi-scale feature maps to align more closely with the size distribution of traffic signs in various datasets. Moreover, our innovative feature-fusion strategy, leveraging the flexibility of Anchor-Free methods, allows for multi-scale object detection on a high-resolution feature map abundant in contextual information, achieving remarkable enhancements in both accuracy and speed. To mitigate the adverse effects of the grid pattern caused by dilated convolutions on the detection of smaller objects, we have devised a unique module that not only mitigates this grid effect but also widens the receptive field to encompass an extensive range of spatial contextual information, thus boosting the efficiency of information usage. Evaluation on challenging public datasets, TT100K and CCTSDB2021, demonstrates that YOLO-TS surpasses existing state-of-the-art methods in terms of both accuracy and speed. The code for our method will be available.
V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and Prediction
In this paper, we explore the use of vehicle-to-vehicle (V2V) communication to improve the perception and motion forecasting performance of self-driving vehicles. By intelligently aggregating the information received from multiple nearby vehicles, we can observe the same scene from different viewpoints. This allows us to see through occlusions and detect actors at long range, where the observations are very sparse or non-existent. We also show that our approach of sending compressed deep feature map activations achieves high accuracy while satisfying communication bandwidth requirements.
Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models
Existing world models for autonomous driving struggle with long-horizon generation and generalization to challenging scenarios. In this work, we develop a model using simple design choices, and without additional supervision or sensors, such as maps, depth, or multiple cameras. We show that our model yields state-of-the-art performance, despite having only 469M parameters and being trained on 280h of video data. It particularly stands out in difficult scenarios like turning maneuvers and urban traffic. We test whether discrete token models possibly have advantages over continuous models based on flow matching. To this end, we set up a hybrid tokenizer that is compatible with both approaches and allows for a side-by-side comparison. Our study concludes in favor of the continuous autoregressive model, which is less brittle on individual design choices and more powerful than the model built on discrete tokens. Code, models and qualitative results are publicly available at https://lmb-freiburg.github.io/orbis.github.io/.
Towards Collaborative Autonomous Driving: Simulation Platform and End-to-End System
Vehicle-to-everything-aided autonomous driving (V2X-AD) has a huge potential to provide a safer driving solution. Despite extensive researches in transportation and communication to support V2X-AD, the actual utilization of these infrastructures and communication resources in enhancing driving performances remains largely unexplored. This highlights the necessity of collaborative autonomous driving: a machine learning approach that optimizes the information sharing strategy to improve the driving performance of each vehicle. This effort necessitates two key foundations: a platform capable of generating data to facilitate the training and testing of V2X-AD, and a comprehensive system that integrates full driving-related functionalities with mechanisms for information sharing. From the platform perspective, we present V2Xverse, a comprehensive simulation platform for collaborative autonomous driving. This platform provides a complete pipeline for collaborative driving. From the system perspective, we introduce CoDriving, a novel end-to-end collaborative driving system that properly integrates V2X communication over the entire autonomous pipeline, promoting driving with shared perceptual information. The core idea is a novel driving-oriented communication strategy. Leveraging this strategy, CoDriving improves driving performance while optimizing communication efficiency. We make comprehensive benchmarks with V2Xverse, analyzing both modular performance and closed-loop driving performance. Experimental results show that CoDriving: i) significantly improves the driving score by 62.49% and drastically reduces the pedestrian collision rate by 53.50% compared to the SOTA end-to-end driving method, and ii) achieves sustaining driving performance superiority over dynamic constraint communication conditions.
CueCAn: Cue Driven Contextual Attention For Identifying Missing Traffic Signs on Unconstrained Roads
Unconstrained Asian roads often involve poor infrastructure, affecting overall road safety. Missing traffic signs are a regular part of such roads. Missing or non-existing object detection has been studied for locating missing curbs and estimating reasonable regions for pedestrians on road scene images. Such methods involve analyzing task-specific single object cues. In this paper, we present the first and most challenging video dataset for missing objects, with multiple types of traffic signs for which the cues are visible without the signs in the scenes. We refer to it as the Missing Traffic Signs Video Dataset (MTSVD). MTSVD is challenging compared to the previous works in two aspects i) The traffic signs are generally not present in the vicinity of their cues, ii) The traffic signs cues are diverse and unique. Also, MTSVD is the first publicly available missing object dataset. To train the models for identifying missing signs, we complement our dataset with 10K traffic sign tracks, with 40 percent of the traffic signs having cues visible in the scenes. For identifying missing signs, we propose the Cue-driven Contextual Attention units (CueCAn), which we incorporate in our model encoder. We first train the encoder to classify the presence of traffic sign cues and then train the entire segmentation model end-to-end to localize missing traffic signs. Quantitative and qualitative analysis shows that CueCAn significantly improves the performance of base models.
TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning
Although Deep Reinforcement Learning (DRL) and Large Language Models (LLMs) each show promise in addressing decision-making challenges in autonomous driving, DRL often suffers from high sample complexity, while LLMs have difficulty ensuring real-time decision making. To address these limitations, we propose TeLL-Drive, a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy. By incorporating risk metrics, historical scenario retrieval, and domain heuristics into context-rich prompts, the LLM produces high-level driving strategies through chain-of-thought reasoning. A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness across diverse driving conditions. The experimental results, evaluated across multiple traffic scenarios, show that TeLL-Drive outperforms existing baseline methods, including other LLM-based approaches, in terms of success rates, average returns, and real-time feasibility. Ablation studies underscore the importance of each model component, especially the synergy between the attention mechanism and LLM-driven guidance. Finally, we build a virtual-real fusion experimental platform to verify the real-time performance, robustness, and reliability of the algorithm running on real vehicles through vehicle-in-loop experiments.
CityFlow: A Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario
Traffic signal control is an emerging application scenario for reinforcement learning. Besides being as an important problem that affects people's daily life in commuting, traffic signal control poses its unique challenges for reinforcement learning in terms of adapting to dynamic traffic environment and coordinating thousands of agents including vehicles and pedestrians. A key factor in the success of modern reinforcement learning relies on a good simulator to generate a large number of data samples for learning. The most commonly used open-source traffic simulator SUMO is, however, not scalable to large road network and large traffic flow, which hinders the study of reinforcement learning on traffic scenarios. This motivates us to create a new traffic simulator CityFlow with fundamentally optimized data structures and efficient algorithms. CityFlow can support flexible definitions for road network and traffic flow based on synthetic and real-world data. It also provides user-friendly interface for reinforcement learning. Most importantly, CityFlow is more than twenty times faster than SUMO and is capable of supporting city-wide traffic simulation with an interactive render for monitoring. Besides traffic signal control, CityFlow could serve as the base for other transportation studies and can create new possibilities to test machine learning methods in the intelligent transportation domain.
What Did I Learn? Operational Competence Assessment for AI-Based Trajectory Planners
Automated driving functions increasingly rely on machine learning for tasks like perception and trajectory planning, requiring large, relevant datasets. The performance of these algorithms depends on how closely the training data matches the task. To ensure reliable functioning, it is crucial to know what is included in the dataset to assess the trained model's operational risk. We aim to enhance the safe use of machine learning in automated driving by developing a method to recognize situations that an automated vehicle has not been sufficiently trained on. This method also improves explainability by describing the dataset at a human-understandable level. We propose modeling driving data as knowledge graphs, representing driving scenes with entities and their relationships. These graphs are queried for specific sub-scene configurations to check their occurrence in the dataset. We estimate a vehicle's competence in a driving scene by considering the coverage and complexity of sub-scene configurations in the training set. Higher complexity scenes require greater coverage for high competence. We apply this method to the NuPlan dataset, modeling it with knowledge graphs and analyzing the coverage of specific driving scenes. This approach helps monitor the competence of machine learning models trained on the dataset, which is essential for trustworthy AI to be deployed in automated driving.
Drive Like a Human: Rethinking Autonomous Driving with Large Language Models
In this paper, we explore the potential of using a large language model (LLM) to understand the driving environment in a human-like manner and analyze its ability to reason, interpret, and memorize when facing complex scenarios. We argue that traditional optimization-based and modular autonomous driving (AD) systems face inherent performance limitations when dealing with long-tail corner cases. To address this problem, we propose that an ideal AD system should drive like a human, accumulating experience through continuous driving and using common sense to solve problems. To achieve this goal, we identify three key abilities necessary for an AD system: reasoning, interpretation, and memorization. We demonstrate the feasibility of employing an LLM in driving scenarios by building a closed-loop system to showcase its comprehension and environment-interaction abilities. Our extensive experiments show that the LLM exhibits the impressive ability to reason and solve long-tailed cases, providing valuable insights for the development of human-like autonomous driving. The related code are available at https://github.com/PJLab-ADG/DriveLikeAHuman .
KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients
Simulators offer the possibility of safe, low-cost development of self-driving systems. However, current driving simulators exhibit na\"ive behavior models for background traffic. Hand-tuned scenarios are typically added during simulation to induce safety-critical situations. An alternative approach is to adversarially perturb the background traffic trajectories. In this paper, we study this approach to safety-critical driving scenario generation using the CARLA simulator. We use a kinematic bicycle model as a proxy to the simulator's true dynamics and observe that gradients through this proxy model are sufficient for optimizing the background traffic trajectories. Based on this finding, we propose KING, which generates safety-critical driving scenarios with a 20% higher success rate than black-box optimization. By solving the scenarios generated by KING using a privileged rule-based expert algorithm, we obtain training data for an imitation learning policy. After fine-tuning on this new data, we show that the policy becomes better at avoiding collisions. Importantly, our generated data leads to reduced collisions on both held-out scenarios generated via KING as well as traditional hand-crafted scenarios, demonstrating improved robustness.
MPDrive: Improving Spatial Understanding with Marker-Based Prompt Learning for Autonomous Driving
Autonomous driving visual question answering (AD-VQA) aims to answer questions related to perception, prediction, and planning based on given driving scene images, heavily relying on the model's spatial understanding capabilities. Prior works typically express spatial information through textual representations of coordinates, resulting in semantic gaps between visual coordinate representations and textual descriptions. This oversight hinders the accurate transmission of spatial information and increases the expressive burden. To address this, we propose a novel Marker-based Prompt learning framework (MPDrive), which represents spatial coordinates by concise visual markers, ensuring linguistic expressive consistency and enhancing the accuracy of both visual perception and spatial expression in AD-VQA. Specifically, we create marker images by employing a detection expert to overlay object regions with numerical labels, converting complex textual coordinate generation into straightforward text-based visual marker predictions. Moreover, we fuse original and marker images as scene-level features and integrate them with detection priors to derive instance-level features. By combining these features, we construct dual-granularity visual prompts that stimulate the LLM's spatial perception capabilities. Extensive experiments on the DriveLM and CODA-LM datasets show that MPDrive achieves state-of-the-art performance, particularly in cases requiring sophisticated spatial understanding.
PhysDrive: A Multimodal Remote Physiological Measurement Dataset for In-vehicle Driver Monitoring
Robust and unobtrusive in-vehicle physiological monitoring is crucial for ensuring driving safety and user experience. While remote physiological measurement (RPM) offers a promising non-invasive solution, its translation to real-world driving scenarios is critically constrained by the scarcity of comprehensive datasets. Existing resources are often limited in scale, modality diversity, the breadth of biometric annotations, and the range of captured conditions, thereby omitting inherent real-world challenges in driving. Here, we present PhysDrive, the first large-scale multimodal dataset for contactless in-vehicle physiological sensing with dedicated consideration on various modality settings and driving factors. PhysDrive collects data from 48 drivers, including synchronized RGB, near-infrared camera, and raw mmWave radar data, accompanied with six synchronized ground truths (ECG, BVP, Respiration, HR, RR, and SpO2). It covers a wide spectrum of naturalistic driving conditions, including driver motions, dynamic natural light, vehicle types, and road conditions. We extensively evaluate both signal-processing and deep-learning methods on PhysDrive, establishing a comprehensive benchmark across all modalities, and release full open-source code with compatibility for mainstream public toolboxes. We envision PhysDrive will serve as a foundational resource and accelerate research on multimodal driver monitoring and smart-cockpit systems.
RASMD: RGB And SWIR Multispectral Driving Dataset for Robust Perception in Adverse Conditions
Current autonomous driving algorithms heavily rely on the visible spectrum, which is prone to performance degradation in adverse conditions like fog, rain, snow, glare, and high contrast. Although other spectral bands like near-infrared (NIR) and long-wave infrared (LWIR) can enhance vision perception in such situations, they have limitations and lack large-scale datasets and benchmarks. Short-wave infrared (SWIR) imaging offers several advantages over NIR and LWIR. However, no publicly available large-scale datasets currently incorporate SWIR data for autonomous driving. To address this gap, we introduce the RGB and SWIR Multispectral Driving (RASMD) dataset, which comprises 100,000 synchronized and spatially aligned RGB-SWIR image pairs collected across diverse locations, lighting, and weather conditions. In addition, we provide a subset for RGB-SWIR translation and object detection annotations for a subset of challenging traffic scenarios to demonstrate the utility of SWIR imaging through experiments on both object detection and RGB-to-SWIR image translation. Our experiments show that combining RGB and SWIR data in an ensemble framework significantly improves detection accuracy compared to RGB-only approaches, particularly in conditions where visible-spectrum sensors struggle. We anticipate that the RASMD dataset will advance research in multispectral imaging for autonomous driving and robust perception systems.
KAN-powered large-target detection for automotive radar
This paper presents a novel radar signal detection pipeline focused on detecting large targets such as cars and SUVs. Traditional methods, such as Ordered-Statistic Constant False Alarm Rate (OS-CFAR), commonly used in automotive radar, are designed for point or isotropic target models. These may not adequately capture the Range-Doppler (RD) scattering patterns of larger targets, especially in high-resolution radar systems. Additional modules such as association and tracking are necessary to refine and consolidate the detections over multiple dwells. To address these limitations, we propose a detection technique based on the probability density function (pdf) of RD segments, leveraging the Kolmogorov-Arnold neural network (KAN) to learn the data and generate interpretable symbolic expressions for binary hypotheses. Beside the Monte-Carlo study showing better performance for the proposed KAN expression over OS-CFAR, it is shown to exhibit a probability of detection (PD) of 96% when transfer learned with field data. The false alarm rate (PFA) is comparable with OS-CFAR designed with PFA = 10^{-6}. Additionally, the study also examines impact of the number of pdf bins representing RD segment on performance of the KAN-based detection.
In Rain or Shine: Understanding and Overcoming Dataset Bias for Improving Robustness Against Weather Corruptions for Autonomous Vehicles
Several popular computer vision (CV) datasets, specifically employed for Object Detection (OD) in autonomous driving tasks exhibit biases due to a range of factors including weather and lighting conditions. These biases may impair a model's generalizability, rendering it ineffective for OD in novel and unseen datasets. Especially, in autonomous driving, it may prove extremely high risk and unsafe for the vehicle and its surroundings. This work focuses on understanding these datasets better by identifying such "good-weather" bias. Methods to mitigate such bias which allows the OD models to perform better and improve the robustness are also demonstrated. A simple yet effective OD framework for studying bias mitigation is proposed. Using this framework, the performance on popular datasets is analyzed and a significant difference in model performance is observed. Additionally, a knowledge transfer technique and a synthetic image corruption technique are proposed to mitigate the identified bias. Finally, using the DAWN dataset, the findings are validated on the OD task, demonstrating the effectiveness of our techniques in mitigating real-world "good-weather" bias. The experiments show that the proposed techniques outperform baseline methods by averaged fourfold improvement.
Traffic-R1: Reinforced LLMs Bring Human-Like Reasoning to Traffic Signal Control Systems
Traffic signal control (TSC) is vital for mitigating congestion and sustaining urban mobility. In this paper, we introduce Traffic-R1, a foundation model with human-like reasoning for TSC systems. Our model is developed through self-exploration and iteration of reinforced large language models (LLMs) with expert guidance in a simulated traffic environment. Compared to traditional reinforcement learning (RL) and recent LLM-based methods, Traffic-R1 offers three significant advantages. First, Traffic-R1 delivers zero-shot generalisation, transferring unchanged to new road networks and out-of-distribution incidents by utilizing its internal traffic control policies and human-like reasoning. Second, its 3B-parameter architecture is lightweight enough for real-time inference on mobile-class chips, enabling large-scale edge deployment. Third, Traffic-R1 provides an explainable TSC process and facilitates multi-intersection communication through its self-iteration and a new synchronous communication network. Extensive benchmarks demonstrate that Traffic-R1 sets a new state of the art, outperforming strong baselines and training-intensive RL controllers. In practice, the model now manages signals for more than 55,000 drivers daily, shortening average queues by over 5% and halving operator workload. Our checkpoint is available at https://huggingface.co/Season998/Traffic-R1.
Pre-training on Synthetic Driving Data for Trajectory Prediction
Accumulating substantial volumes of real-world driving data proves pivotal in the realm of trajectory forecasting for autonomous driving. Given the heavy reliance of current trajectory forecasting models on data-driven methodologies, we aim to tackle the challenge of learning general trajectory forecasting representations under limited data availability. We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting. The solution is composed of two parts: firstly, we adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them. Specifically, we apply vector transformations to reshape the maps, and then employ a rule-based model to generate trajectories on both original and augmented scenes; thus enlarging the driving data without collecting additional real ones. To foster the learning of general representations within this augmented dataset, we comprehensively explore the different pre-training strategies, including extending the concept of a Masked AutoEncoder (MAE) for trajectory forecasting. Without bells and whistles, our proposed pipeline-level solution is general, simple, yet effective: we conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies, which outperform the baseline prediction model by large margins, e.g. 5.04%, 3.84% and 8.30% in terms of MR_6, minADE_6 and minFDE_6. The pre-training dataset and the codes for pre-training and fine-tuning are released at https://github.com/yhli123/Pretraining_on_Synthetic_Driving_Data_for_Trajectory_Prediction.
Ctrl-Crash: Controllable Diffusion for Realistic Car Crashes
Video diffusion techniques have advanced significantly in recent years; however, they struggle to generate realistic imagery of car crashes due to the scarcity of accident events in most driving datasets. Improving traffic safety requires realistic and controllable accident simulations. To tackle the problem, we propose Ctrl-Crash, a controllable car crash video generation model that conditions on signals such as bounding boxes, crash types, and an initial image frame. Our approach enables counterfactual scenario generation where minor variations in input can lead to dramatically different crash outcomes. To support fine-grained control at inference time, we leverage classifier-free guidance with independently tunable scales for each conditioning signal. Ctrl-Crash achieves state-of-the-art performance across quantitative video quality metrics (e.g., FVD and JEDi) and qualitative measurements based on a human-evaluation of physical realism and video quality compared to prior diffusion-based methods.
Learning to Drive from a World Model
Most self-driving systems rely on hand-coded perception outputs and engineered driving rules. Learning directly from human driving data with an end-to-end method can allow for a training architecture that is simpler and scales well with compute and data. In this work, we propose an end-to-end training architecture that uses real driving data to train a driving policy in an on-policy simulator. We show two different methods of simulation, one with reprojective simulation and one with a learned world model. We show that both methods can be used to train a policy that learns driving behavior without any hand-coded driving rules. We evaluate the performance of these policies in a closed-loop simulation and when deployed in a real-world advanced driver-assistance system.
The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey
Driving World Model (DWM), which focuses on predicting scene evolution during the driving process, has emerged as a promising paradigm in pursuing autonomous driving. These methods enable autonomous driving systems to better perceive, understand, and interact with dynamic driving environments. In this survey, we provide a comprehensive overview of the latest progress in DWM. We categorize existing approaches based on the modalities of the predicted scenes and summarize their specific contributions to autonomous driving. In addition, high-impact datasets and various metrics tailored to different tasks within the scope of DWM research are reviewed. Finally, we discuss the potential limitations of current research and propose future directions. This survey provides valuable insights into the development and application of DWM, fostering its broader adoption in autonomous driving. The relevant papers are collected at https://github.com/LMD0311/Awesome-World-Model.
A Novel Temporal Multi-Gate Mixture-of-Experts Approach for Vehicle Trajectory and Driving Intention Prediction
Accurate Vehicle Trajectory Prediction is critical for automated vehicles and advanced driver assistance systems. Vehicle trajectory prediction consists of two essential tasks, i.e., longitudinal position prediction and lateral position prediction. There is a significant correlation between driving intentions and vehicle motion. In existing work, the three tasks are often conducted separately without considering the relationships between the longitudinal position, lateral position, and driving intention. In this paper, we propose a novel Temporal Multi-Gate Mixture-of-Experts (TMMOE) model for simultaneously predicting the vehicle trajectory and driving intention. The proposed model consists of three layers: a shared layer, an expert layer, and a fully connected layer. In the model, the shared layer utilizes Temporal Convolutional Networks (TCN) to extract temporal features. Then the expert layer is built to identify different information according to the three tasks. Moreover, the fully connected layer is used to integrate and export prediction results. To achieve better performance, uncertainty algorithm is used to construct the multi-task loss function. Finally, the publicly available CitySim dataset validates the TMMOE model, demonstrating superior performance compared to the LSTM model, achieving the highest classification and regression results. Keywords: Vehicle trajectory prediction, driving intentions Classification, Multi-task
Sign Language: Towards Sign Understanding for Robot Autonomy
Signage is an ubiquitous element of human environments, playing a critical role in both scene understanding and navigation. For autonomous systems to fully interpret human environments, effectively parsing and understanding signs is essential. We introduce the task of navigational sign understanding, aimed at extracting navigational cues from signs that convey symbolic spatial information about the scene. Specifically, we focus on signs capturing directional cues that point toward distant locations and locational cues that identify specific places. To benchmark performance on this task, we curate a comprehensive test set, propose appropriate evaluation metrics, and establish a baseline approach. Our test set consists of over 160 images, capturing signs with varying complexity and design across a wide range of public spaces, such as hospitals, shopping malls, and transportation hubs. Our baseline approach harnesses Vision-Language Models (VLMs) to parse navigational signs under these high degrees of variability. Experiments show that VLMs offer promising performance on this task, potentially motivating downstream applications in robotics. The code and dataset are available on Github.
The Rogue Scalpel: Activation Steering Compromises LLM Safety
Activation steering is a promising technique for controlling LLM behavior by adding semantically meaningful vectors directly into a model's hidden states during inference. It is often framed as a precise, interpretable, and potentially safer alternative to fine-tuning. We demonstrate the opposite: steering systematically breaks model alignment safeguards, making it comply with harmful requests. Through extensive experiments on different model families, we show that even steering in a random direction can increase the probability of harmful compliance from 0% to 2-27%. Alarmingly, steering benign features from a sparse autoencoder (SAE), a common source of interpretable directions, increases these rates by a further 2-4%. Finally, we show that combining 20 randomly sampled vectors that jailbreak a single prompt creates a universal attack, significantly increasing harmful compliance on unseen requests. These results challenge the paradigm of safety through interpretability, showing that precise control over model internals does not guarantee precise control over model behavior.
Salient Object Detection in Traffic Scene through the TSOD10K Dataset
Traffic Salient Object Detection (TSOD) aims to segment the objects critical to driving safety by combining semantic (e.g., collision risks) and visual saliency. Unlike SOD in natural scene images (NSI-SOD), which prioritizes visually distinctive regions, TSOD emphasizes the objects that demand immediate driver attention due to their semantic impact, even with low visual contrast. This dual criterion, i.e., bridging perception and contextual risk, re-defines saliency for autonomous and assisted driving systems. To address the lack of task-specific benchmarks, we collect the first large-scale TSOD dataset with pixel-wise saliency annotations, named TSOD10K. TSOD10K covers the diverse object categories in various real-world traffic scenes under various challenging weather/illumination variations (e.g., fog, snowstorms, low-contrast, and low-light). Methodologically, we propose a Mamba-based TSOD model, termed Tramba. Considering the challenge of distinguishing inconspicuous visual information from complex traffic backgrounds, Tramba introduces a novel Dual-Frequency Visual State Space module equipped with shifted window partitioning and dilated scanning to enhance the perception of fine details and global structure by hierarchically decomposing high/low-frequency components. To emphasize critical regions in traffic scenes, we propose a traffic-oriented Helix 2D-Selective-Scan (Helix-SS2D) mechanism that injects driving attention priors while effectively capturing global multi-direction spatial dependencies. We establish a comprehensive benchmark by evaluating Tramba and 22 existing NSI-SOD models on TSOD10K, demonstrating Tramba's superiority. Our research establishes the first foundation for safety-aware saliency analysis in intelligent transportation systems.
Does Physical Adversarial Example Really Matter to Autonomous Driving? Towards System-Level Effect of Adversarial Object Evasion Attack
In autonomous driving (AD), accurate perception is indispensable to achieving safe and secure driving. Due to its safety-criticality, the security of AD perception has been widely studied. Among different attacks on AD perception, the physical adversarial object evasion attacks are especially severe. However, we find that all existing literature only evaluates their attack effect at the targeted AI component level but not at the system level, i.e., with the entire system semantics and context such as the full AD pipeline. Thereby, this raises a critical research question: can these existing researches effectively achieve system-level attack effects (e.g., traffic rule violations) in the real-world AD context? In this work, we conduct the first measurement study on whether and how effectively the existing designs can lead to system-level effects, especially for the STOP sign-evasion attacks due to their popularity and severity. Our evaluation results show that all the representative prior works cannot achieve any system-level effects. We observe two design limitations in the prior works: 1) physical model-inconsistent object size distribution in pixel sampling and 2) lack of vehicle plant model and AD system model consideration. Then, we propose SysAdv, a novel system-driven attack design in the AD context and our evaluation results show that the system-level effects can be significantly improved, i.e., the violation rate increases by around 70%.
Application of Multimodal Large Language Models in Autonomous Driving
In this era of technological advancements, several cutting-edge techniques are being implemented to enhance Autonomous Driving (AD) systems, focusing on improving safety, efficiency, and adaptability in complex driving environments. However, AD still faces some problems including performance limitations. To address this problem, we conducted an in-depth study on implementing the Multi-modal Large Language Model. We constructed a Virtual Question Answering (VQA) dataset to fine-tune the model and address problems with the poor performance of MLLM on AD. We then break down the AD decision-making process by scene understanding, prediction, and decision-making. Chain of Thought has been used to make the decision more perfectly. Our experiments and detailed analysis of Autonomous Driving give an idea of how important MLLM is for AD.
COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked Vehicles
Optical sensors and learning algorithms for autonomous vehicles have dramatically advanced in the past few years. Nonetheless, the reliability of today's autonomous vehicles is hindered by the limited line-of-sight sensing capability and the brittleness of data-driven methods in handling extreme situations. With recent developments of telecommunication technologies, cooperative perception with vehicle-to-vehicle communications has become a promising paradigm to enhance autonomous driving in dangerous or emergency situations. We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving. Our model encodes LiDAR information into compact point-based representations that can be transmitted as messages between vehicles via realistic wireless channels. To evaluate our model, we develop AutoCastSim, a network-augmented driving simulation framework with example accident-prone scenarios. Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate over egocentric driving models in these challenging driving situations and a 5 times smaller bandwidth requirement than prior work V2VNet. COOPERNAUT and AUTOCASTSIM are available at https://ut-austin-rpl.github.io/Coopernaut/.
Trajeglish: Learning the Language of Driving Scenarios
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs. In pursuit of this functionality, we apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios. Using a simple data-driven tokenization scheme, we discretize trajectories to centimeter-level resolution using a small vocabulary. We then model the multi-agent sequence of motion tokens with a GPT-like encoder-decoder that is autoregressive in time and takes into account intra-timestep interaction between agents. Scenarios sampled from our model exhibit state-of-the-art realism; our model tops the Waymo Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%. We ablate our modeling choices in full autonomy and partial autonomy settings, and show that the representations learned by our model can quickly be adapted to improve performance on nuScenes. We additionally evaluate the scalability of our model with respect to parameter count and dataset size, and use density estimates from our model to quantify the saliency of context length and intra-timestep interaction for the traffic modeling task.
Several questions of visual generation in 2024
This paper does not propose any new algorithms but instead outlines various problems in the field of visual generation based on the author's personal understanding. The core of these problems lies in how to decompose visual signals, with all other issues being closely related to this central problem and stemming from unsuitable approaches to signal decomposition. This paper aims to draw researchers' attention to the significance of Visual Signal Decomposition.
Unveiling Intrinsic Dimension of Texts: from Academic Abstract to Creative Story
Intrinsic dimension (ID) is an important tool in modern LLM analysis, informing studies of training dynamics, scaling behavior, and dataset structure, yet its textual determinants remain underexplored. We provide the first comprehensive study grounding ID in interpretable text properties through cross-encoder analysis, linguistic features, and sparse autoencoders (SAEs). In this work, we establish three key findings. First, ID is complementary to entropy-based metrics: after controlling for length, the two are uncorrelated, with ID capturing geometric complexity orthogonal to prediction quality. Second, ID exhibits robust genre stratification: scientific prose shows low ID (~8), encyclopedic content medium ID (~9), and creative/opinion writing high ID (~10.5) across all models tested. This reveals that contemporary LLMs find scientific text "representationally simple" while fiction requires additional degrees of freedom. Third, using SAEs, we identify causal features: scientific signals (formal tone, report templates, statistics) reduce ID; humanized signals (personalization, emotion, narrative) increase it. Steering experiments confirm these effects are causal. Thus, for contemporary models, scientific writing appears comparatively "easy", whereas fiction, opinion, and affect add representational degrees of freedom. Our multi-faceted analysis provides practical guidance for the proper use of ID and the sound interpretation of ID-based results.
Vehicle Energy Dataset (VED), A Large-scale Dataset for Vehicle Energy Consumption Research
We present Vehicle Energy Dataset (VED), a novel large-scale dataset of fuel and energy data collected from 383 personal cars in Ann Arbor, Michigan, USA. This open dataset captures GPS trajectories of vehicles along with their time-series data of fuel, energy, speed, and auxiliary power usage. A diverse fleet consisting of 264 gasoline vehicles, 92 HEVs, and 27 PHEV/EVs drove in real-world from Nov, 2017 to Nov, 2018, where the data were collected through onboard OBD-II loggers. Driving scenarios range from highways to traffic-dense downtown area in various driving conditions and seasons. In total, VED accumulates approximately 374,000 miles. We discuss participant privacy protection and develop a method to de-identify personally identifiable information while preserving the quality of the data. After the de-identification, we conducted case studies on the dataset to investigate the impacts of factors known to affect fuel economy and identify energy-saving opportunities that hybrid-electric vehicles and eco-driving techniques can provide. The case studies are supplemented with a number of examples to demonstrate how VED can be utilized for vehicle energy and behavior studies. Potential research opportunities include data-driven vehicle energy consumption modeling, driver behavior modeling, machine and deep learning, calibration of traffic simulators, optimal route choice modeling, prediction of human driver behaviors, and decision making of self-driving cars. We believe that VED can be an instrumental asset to the development of future automotive technologies. The dataset can be accessed at https://github.com/gsoh/VED.
End-to-end Autonomous Driving: Challenges and Frontiers
The autonomous driving community has witnessed a rapid growth in approaches that embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle motion plans, instead of concentrating on individual tasks such as detection and motion prediction. End-to-end systems, in comparison to modular pipelines, benefit from joint feature optimization for perception and planning. This field has flourished due to the availability of large-scale datasets, closed-loop evaluation, and the increasing need for autonomous driving algorithms to perform effectively in challenging scenarios. In this survey, we provide a comprehensive analysis of more than 250 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving. We delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst others. Additionally, we discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these techniques within the end-to-end driving framework. To facilitate future research, we maintain an active repository that contains up-to-date links to relevant literature and open-source projects at https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving.
VLM-AD: End-to-End Autonomous Driving through Vision-Language Model Supervision
Human drivers rely on commonsense reasoning to navigate diverse and dynamic real-world scenarios. Existing end-to-end (E2E) autonomous driving (AD) models are typically optimized to mimic driving patterns observed in data, without capturing the underlying reasoning processes. This limitation constrains their ability to handle challenging driving scenarios. To close this gap, we propose VLM-AD, a method that leverages vision-language models (VLMs) as teachers to enhance training by providing additional supervision that incorporates unstructured reasoning information and structured action labels. Such supervision enhances the model's ability to learn richer feature representations that capture the rationale behind driving patterns. Importantly, our method does not require a VLM during inference, making it practical for real-time deployment. When integrated with state-of-the-art methods, VLM-AD achieves significant improvements in planning accuracy and reduced collision rates on the nuScenes dataset.
Are VLMs Ready for Autonomous Driving? An Empirical Study from the Reliability, Data, and Metric Perspectives
Recent advancements in Vision-Language Models (VLMs) have sparked interest in their use for autonomous driving, particularly in generating interpretable driving decisions through natural language. However, the assumption that VLMs inherently provide visually grounded, reliable, and interpretable explanations for driving remains largely unexamined. To address this gap, we introduce DriveBench, a benchmark dataset designed to evaluate VLM reliability across 17 settings (clean, corrupted, and text-only inputs), encompassing 19,200 frames, 20,498 question-answer pairs, three question types, four mainstream driving tasks, and a total of 12 popular VLMs. Our findings reveal that VLMs often generate plausible responses derived from general knowledge or textual cues rather than true visual grounding, especially under degraded or missing visual inputs. This behavior, concealed by dataset imbalances and insufficient evaluation metrics, poses significant risks in safety-critical scenarios like autonomous driving. We further observe that VLMs struggle with multi-modal reasoning and display heightened sensitivity to input corruptions, leading to inconsistencies in performance. To address these challenges, we propose refined evaluation metrics that prioritize robust visual grounding and multi-modal understanding. Additionally, we highlight the potential of leveraging VLMs' awareness of corruptions to enhance their reliability, offering a roadmap for developing more trustworthy and interpretable decision-making systems in real-world autonomous driving contexts. The benchmark toolkit is publicly accessible.
Making Large Language Models Better Planners with Reasoning-Decision Alignment
Data-driven approaches for autonomous driving (AD) have been widely adopted in the past decade but are confronted with dataset bias and uninterpretability. Inspired by the knowledge-driven nature of human driving, recent approaches explore the potential of large language models (LLMs) to improve understanding and decision-making in traffic scenarios. They find that the pretrain-finetune paradigm of LLMs on downstream data with the Chain-of-Thought (CoT) reasoning process can enhance explainability and scene understanding. However, such a popular strategy proves to suffer from the notorious problems of misalignment between the crafted CoTs against the consequent decision-making, which remains untouched by previous LLM-based AD methods. To address this problem, we motivate an end-to-end decision-making model based on multimodality-augmented LLM, which simultaneously executes CoT reasoning and carries out planning results. Furthermore, we propose a reasoning-decision alignment constraint between the paired CoTs and planning results, imposing the correspondence between reasoning and decision-making. Moreover, we redesign the CoTs to enable the model to comprehend complex scenarios and enhance decision-making performance. We dub our proposed large language planners with reasoning-decision alignment as RDA-Driver. Experimental evaluations on the nuScenes and DriveLM-nuScenes benchmarks demonstrate the effectiveness of our RDA-Driver in enhancing the performance of end-to-end AD systems. Specifically, our RDA-Driver achieves state-of-the-art planning performance on the nuScenes dataset with 0.80 L2 error and 0.32 collision rate, and also achieves leading results on challenging DriveLM-nuScenes benchmarks with 0.82 L2 error and 0.38 collision rate.
Forecasting Trajectory and Behavior of Road-Agents Using Spectral Clustering in Graph-LSTMs
We present a novel approach for traffic forecasting in urban traffic scenarios using a combination of spectral graph analysis and deep learning. We predict both the low-level information (future trajectories) as well as the high-level information (road-agent behavior) from the extracted trajectory of each road-agent. Our formulation represents the proximity between the road agents using a weighted dynamic geometric graph (DGG). We use a two-stream graph-LSTM network to perform traffic forecasting using these weighted DGGs. The first stream predicts the spatial coordinates of road-agents, while the second stream predicts whether a road-agent is going to exhibit overspeeding, underspeeding, or neutral behavior by modeling spatial interactions between road-agents. Additionally, we propose a new regularization algorithm based on spectral clustering to reduce the error margin in long-term prediction (3-5 seconds) and improve the accuracy of the predicted trajectories. Moreover, we prove a theoretical upper bound on the regularized prediction error. We evaluate our approach on the Argoverse, Lyft, Apolloscape, and NGSIM datasets and highlight the benefits over prior trajectory prediction methods. In practice, our approach reduces the average prediction error by approximately 75% over prior algorithms and achieves a weighted average accuracy of 91.2% for behavior prediction. Additionally, our spectral regularization improves long-term prediction by up to 70%.
On the Identifiability and Estimation of Causal Location-Scale Noise Models
We study the class of location-scale or heteroscedastic noise models (LSNMs), in which the effect Y can be written as a function of the cause X and a noise source N independent of X, which may be scaled by a positive function g over the cause, i.e., Y = f(X) + g(X)N. Despite the generality of the model class, we show the causal direction is identifiable up to some pathological cases. To empirically validate these theoretical findings, we propose two estimators for LSNMs: an estimator based on (non-linear) feature maps, and one based on neural networks. Both model the conditional distribution of Y given X as a Gaussian parameterized by its natural parameters. When the feature maps are correctly specified, we prove that our estimator is jointly concave, and a consistent estimator for the cause-effect identification task. Although the the neural network does not inherit those guarantees, it can fit functions of arbitrary complexity, and reaches state-of-the-art performance across benchmarks.
Autonomous Driving at Unsignalized Intersections: A Review of Decision-Making Challenges and Reinforcement Learning-Based Solutions
Autonomous driving at unsignalized intersections is still considered a challenging application for machine learning due to the complications associated with handling complex multi-agent scenarios characterized by a high degree of uncertainty. Automating the decision-making process at these safety-critical environments involves comprehending multiple levels of abstractions associated with learning robust driving behaviors to enable the vehicle to navigate efficiently. In this survey, we aim at exploring the state-of-the-art techniques implemented for decision-making applications, with a focus on algorithms that combine Reinforcement Learning (RL) and deep learning for learning traversing policies at unsignalized intersections. The reviewed schemes vary in the proposed driving scenario, in the assumptions made for the used intersection model, in the tackled challenges, and in the learning algorithms that are used. We have presented comparisons for these techniques to highlight their limitations and strengths. Based on our in-depth investigation, it can be discerned that a robust decision-making scheme for navigating real-world unsignalized intersection has yet to be developed. Along with our analysis and discussion, we recommend potential research directions encouraging the interested players to tackle the highlighted challenges. By adhering to our recommendations, decision-making architectures that are both non-overcautious and safe, yet feasible, can be trained and validated in real-world unsignalized intersections environments.
HGNET: A Hierarchical Feature Guided Network for Occupancy Flow Field Prediction
Predicting the motion of multiple traffic participants has always been one of the most challenging tasks in autonomous driving. The recently proposed occupancy flow field prediction method has shown to be a more effective and scalable representation compared to general trajectory prediction methods. However, in complex multi-agent traffic scenarios, it remains difficult to model the interactions among various factors and the dependencies among prediction outputs at different time steps. In view of this, we propose a transformer-based hierarchical feature guided network (HGNET), which can efficiently extract features of agents and map information from visual and vectorized inputs, modeling multimodal interaction relationships. Second, we design the Feature-Guided Attention (FGAT) module to leverage the potential guiding effects between different prediction targets, thereby improving prediction accuracy. Additionally, to enhance the temporal consistency and causal relationships of the predictions, we propose a Time Series Memory framework to learn the conditional distribution models of the prediction outputs at future time steps from multivariate time series. The results demonstrate that our model exhibits competitive performance, which ranks 3rd in the 2024 Waymo Occupancy and Flow Prediction Challenge.
From Steering to Pedalling: Do Autonomous Driving VLMs Generalize to Cyclist-Assistive Spatial Perception and Planning?
Cyclists often encounter safety-critical situations in urban traffic, highlighting the need for assistive systems that support safe and informed decision-making. Recently, vision-language models (VLMs) have demonstrated strong performance on autonomous driving benchmarks, suggesting their potential for general traffic understanding and navigation-related reasoning. However, existing evaluations are predominantly vehicle-centric and fail to assess perception and reasoning from a cyclist-centric viewpoint. To address this gap, we introduce CyclingVQA, a diagnostic benchmark designed to probe perception, spatio-temporal understanding, and traffic-rule-to-lane reasoning from a cyclist's perspective. Evaluating 31+ recent VLMs spanning general-purpose, spatially enhanced, and autonomous-driving-specialized models, we find that current models demonstrate encouraging capabilities, while also revealing clear areas for improvement in cyclist-centric perception and reasoning, particularly in interpreting cyclist-specific traffic cues and associating signs with the correct navigational lanes. Notably, several driving-specialized models underperform strong generalist VLMs, indicating limited transfer from vehicle-centric training to cyclist-assistive scenarios. Finally, through systematic error analysis, we identify recurring failure modes to guide the development of more effective cyclist-assistive intelligent systems.
Dense Road Surface Grip Map Prediction from Multimodal Image Data
Slippery road weather conditions are prevalent in many regions and cause a regular risk for traffic. Still, there has been less research on how autonomous vehicles could detect slippery driving conditions on the road to drive safely. In this work, we propose a method to predict a dense grip map from the area in front of the car, based on postprocessed multimodal sensor data. We trained a convolutional neural network to predict pixelwise grip values from fused RGB camera, thermal camera, and LiDAR reflectance images, based on weakly supervised ground truth from an optical road weather sensor. The experiments show that it is possible to predict dense grip values with good accuracy from the used data modalities as the produced grip map follows both ground truth measurements and local weather conditions, such as snowy areas on the road. The model using only the RGB camera or LiDAR reflectance modality provided good baseline results for grip prediction accuracy while using models fusing the RGB camera, thermal camera, and LiDAR modalities improved the grip predictions significantly.
Situation Awareness for Driver-Centric Driving Style Adaptation
There is evidence that the driving style of an autonomous vehicle is important to increase the acceptance and trust of the passengers. The driving situation has been found to have a significant influence on human driving behavior. However, current driving style models only partially incorporate driving environment information, limiting the alignment between an agent and the given situation. Therefore, we propose a situation-aware driving style model based on different visual feature encoders pretrained on fleet data, as well as driving behavior predictors, which are adapted to the driving style of a specific driver. Our experiments show that the proposed method outperforms static driving styles significantly and forms plausible situation clusters. Furthermore, we found that feature encoders pretrained on our dataset lead to more precise driving behavior modeling. In contrast, feature encoders pretrained supervised and unsupervised on different data sources lead to more specific situation clusters, which can be utilized to constrain and control the driving style adaptation for specific situations. Moreover, in a real-world setting, where driving style adaptation is happening iteratively, we found the MLP-based behavior predictors achieve good performance initially but suffer from catastrophic forgetting. In contrast, behavior predictors based on situationdependent statistics can learn iteratively from continuous data streams by design. Overall, our experiments show that important information for driving behavior prediction is contained within the visual feature encoder. The dataset is publicly available at huggingface.co/datasets/jHaselberger/SADC-Situation-Awareness-for-Driver-Centric-Driving-Style-Adaptation.
Traffic Signs Detection and Recognition System using Deep Learning
With the rapid development of technology, automobiles have become an essential asset in our day-to-day lives. One of the more important researches is Traffic Signs Recognition (TSR) systems. This paper describes an approach for efficiently detecting and recognizing traffic signs in real-time, taking into account the various weather, illumination and visibility challenges through the means of transfer learning. We tackle the traffic sign detection problem using the state-of-the-art of multi-object detection systems such as Faster Recurrent Convolutional Neural Networks (F-RCNN) and Single Shot Multi- Box Detector (SSD) combined with various feature extractors such as MobileNet v1 and Inception v2, and also Tiny-YOLOv2. However, the focus of this paper is going to be F-RCNN Inception v2 and Tiny YOLO v2 as they achieved the best results. The aforementioned models were fine-tuned on the German Traffic Signs Detection Benchmark (GTSDB) dataset. These models were tested on the host PC as well as Raspberry Pi 3 Model B+ and the TASS PreScan simulation. We will discuss the results of all the models in the conclusion section.
Bench2Drive: Towards Multi-Ability Benchmarking of Closed-Loop End-To-End Autonomous Driving
In an era marked by the rapid scaling of foundation models, autonomous driving technologies are approaching a transformative threshold where end-to-end autonomous driving (E2E-AD) emerges due to its potential of scaling up in the data-driven manner. However, existing E2E-AD methods are mostly evaluated under the open-loop log-replay manner with L2 errors and collision rate as metrics (e.g., in nuScenes), which could not fully reflect the driving performance of algorithms as recently acknowledged in the community. For those E2E-AD methods evaluated under the closed-loop protocol, they are tested in fixed routes (e.g., Town05Long and Longest6 in CARLA) with the driving score as metrics, which is known for high variance due to the unsmoothed metric function and large randomness in the long route. Besides, these methods usually collect their own data for training, which makes algorithm-level fair comparison infeasible. To fulfill the paramount need of comprehensive, realistic, and fair testing environments for Full Self-Driving (FSD), we present Bench2Drive, the first benchmark for evaluating E2E-AD systems' multiple abilities in a closed-loop manner. Bench2Drive's official training data consists of 2 million fully annotated frames, collected from 13638 short clips uniformly distributed under 44 interactive scenarios (cut-in, overtaking, detour, etc), 23 weathers (sunny, foggy, rainy, etc), and 12 towns (urban, village, university, etc) in CARLA v2. Its evaluation protocol requires E2E-AD models to pass 44 interactive scenarios under different locations and weathers which sums up to 220 routes and thus provides a comprehensive and disentangled assessment about their driving capability under different situations. We implement state-of-the-art E2E-AD models and evaluate them in Bench2Drive, providing insights regarding current status and future directions.
