Towards Personalized Bangla Book Recommendation: A Large-Scale Multi-Entity Book Graph Dataset
Abstract
A large-scale heterogeneous book graph dataset named RokomariBG is introduced for personalized book recommendation in Bangla literature, along with benchmark results demonstrating the effectiveness of neural retrieval models that leverage multi-relational structure and textual side information.
Personalized book recommendation in Bangla literature has been constrained by the lack of structured, large-scale, and publicly available datasets. This work introduces RokomariBG, a large-scale, multi-entity heterogeneous book graph dataset designed to support research on personalized recommendation in a low-resource language setting. The dataset comprises 127,302 books, 63,723 users, 16,601 authors, 1,515 categories, 2,757 publishers, and 209,602 reviews, connected through eight relation types and organized as a comprehensive knowledge graph. To demonstrate the utility of the dataset, we provide a systematic benchmarking study on the Top-N recommendation task, evaluating a diverse set of representative recommendation models, including classical collaborative filtering methods, matrix factorization models, content-based approaches, graph neural networks, a hybrid matrix factorization model with side information, and a neural two-tower retrieval architecture. The benchmarking results highlight the importance of leveraging multi-relational structure and textual side information, with neural retrieval models achieving the strongest performance (NDCG@10 = 0.204). Overall, this work establishes a foundational benchmark and a publicly available resource for Bangla book recommendation research, enabling reproducible evaluation and future studies on recommendation in low-resource cultural domains. The dataset and code are publicly available at https://github.com/backlashblitz/Bangla-Book-Recommendation-Dataset
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper